Understanding Polymer Processing

Processes and Governing Equations

Author: Tim A. Osswald

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 156990717X

Category: Technology & Engineering

Page: 378

View: 5360

This book provides the background needed to understand not only the wide field of polymer processing, but also the emerging technologies associated with the plastics industry in the 21st Century. It combines practical engineering concepts with modeling of realistic polymer processes. Divided into three sections, it provides the reader with a solid knowledge base in polymer materials, polymer processing, and modeling. "Understanding Polymer Processing" is intended for the person who is entering the plastics manufacturing industry and as a textbook for students taking an introductory course in polymer processing. It also serves as a guide to the practicing engineer when choosing a process, determining important parameters and factors during the early stages of process design, and when optimizing such a process. Practical examples illustrating basic concepts are presented throughout the book. New in the second edition is a chapter on additive manufacturing, together with associated examples, as well as improvements and corrections throughout the book. Contents: o Part I - Polymeric Materials This section gives a general introduction to polymers, including mechanical behavior of polymers and melt rheology o Part II Polymer Processing The major polymer processes are introduced in this section, including extrusion, mixing, injection molding, thermoforming, blow molding, film blowing, and many others. o Part III Modeling This last section delivers the tools to allow the engineer to solve back-of-the-envelope polymer processing models. It includes dimensional analysis and scaling, transport phenomena in polymer processing, and modeling polymer processes

Polymer Processing

Modeling and Simulation

Author: Tim A. Osswald,Juan Pablo Hernández-Ortiz

Publisher: Hanser Verlag

ISBN: 9781569903988

Category: Technology & Engineering

Page: 606

View: 8405

This three-part textbook is written for a two-semester polymer processing series in mechanical or chemical engineering. The first and second part are designed for a senior- to grad-level course introducing polymer processing, and the third part is for a graduate course on simulation in polymer processing. Throughout the book, many applications are presented in form of examples and illustrations. These will also serve the practicing engineer as a guide when determining important parameters and factors during the design process or when optimizing a process.

Fundamentals of Interfacial Engineering

Author: Robert J. Stokes,D. Fennell Evans

Publisher: John Wiley & Sons

ISBN: 9780471186472

Category: Science

Page: 701

View: 6138

Fundamentals of Interfacial Engineering defines the newly emerging, cross-disciplinary field of interfacial engineering. It gives students a coherent, integrated approach to the field, while offering engineering instructors an excellent starting point for curriculum development. The text emphasizes the fundamental concepts underlying interfacial phenomena and how these concepts are reduced to practice in processing and manufacturing settings. Fundamentals of Interfacial Engineering is a useful introductory overview of senior-level undergraduate and first-year graduate students in chemical engineering, materials science, polymer science, and electronics engineering, as well as for industrial and government researchers seeking knowledge of interfacial phenomena across disciplinary lines.

Polymer Processing

Principles and Modeling

Author: Jean-François Agassant,Pierre Avenas,Pierre J. Carreau,Bruno Vergnes,Michel Vincent

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 1569907056

Category: Technology & Engineering

Page: 888

View: 9509

Engineering of polymers is not an easy exercise: with evolving technology, it often involves complex concepts and processes. This book is intended to provide the theoretical essentials: understanding of processes, a basis for the use of design software, and much more. The necessary physical concepts such as continuum mechanics, rheological behavior and measurement methods, and thermal science with its application to heating-cooling problems and implications for flow behavior are analyzed in detail. This knowledge is then applied to key processing methods, including single-screw extrusion and extrusion die flow, twin-screw extrusion and its applications, injection molding, calendering, and processes involving stretching. With many exercises with solutions offered throughout the book to reinforce the concepts presented, and extensive illustrations, this is an essential guide for mastering the art of plastics processing. Practical and didactic, Polymer Processing: Principles and Modeling is intended for engineers and technicians of the profession, as well as for advanced students in Polymer Science and Plastics Engineering.

Advanced Materials Processing and Manufacturing

Author: Yogesh Jaluria

Publisher: Springer

ISBN: 3319769839

Category: Technology & Engineering

Page: 357

View: 4832

This book focuses on advanced processing of new and emerging materials, and advanced manufacturing systems based on thermal transport and fluid flow. It examines recent areas of considerable growth in new and emerging manufacturing techniques and materials, such as fiber optics, manufacture of electronic components, polymeric and composite materials, alloys, microscale components, and new devices and applications. The book includes analysis, mathematical modeling, numerical simulation and experimental study of processes for prediction, design and optimization. It discusses the link between the characteristics of the final product and the basic transport mechanisms and provides a foundation for the study of a wide range of manufacturing processes. Focuses on new and advanced methods of manufacturing and materials processing with traditional methods described in light of the new approaches; Maximizes reader understanding of the fundamentals of how materials change, what transport processes are involved, and how these can be simulated and optimized - concepts not covered elsewhere; Introduces new materials and applications in manufacturing and summarizes traditional processing methods, such as heat treatment, extrusion, casting, injection molding, and bonding, to show how they have evolved and how they could be used for meeting the challenges that we face today.

Rheological Fundamentals of Polymer Processing

Author: Jose Covas,J.F. Agassant,A.C. Diogo,J. Vlachopoulos,K. Walters

Publisher: Springer Science & Business Media

ISBN: 9401585717

Category: Technology & Engineering

Page: 464

View: 7949

Experts in rheology and polymer processing present up-to-date, fundamental and applied information on the rheological properties of polymers, in particular those relevant to processing, contributing to the physical understanding and the mathematical modelling of polymer processing sequences. Basic concepts of non-Newtonian fluid mechanics, micro-rheological modelling and constitutive modelling are reviewed, and rheological measurements are described. Topics with practical relevance are debated, such as linear viscoelasticity, converging and diverging flows, and the rheology of multiphase systems. Approximation methods are discussed for the computer modelling of polymer melt flow. Subsequently, polymer processing technologies are studied from both simulation and engineering perspectives. Mixing, crystallization and reactive processing aspects are also included. Audience: An integrated and complete view of polymer processing and rheology, important to institutions and individuals engaged in the characterisation, testing, compounding, modification and processing of polymeric materials. Can also support academic polymer processing engineering programs.

Transport phenomena and materials processing

Author: Sindo Kou

Publisher: Wiley-Interscience

ISBN: 9780471076674

Category: Science

Page: 669

View: 4514

An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication Covers the latest advances in the field, including recent results of computer simulation and flow visualization Presents special boundary conditions for transport phenomena in materials processing Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving Offers a unique derivation of governing equations that leads to both overall and differential balance equations Provides a list of publicly available computer programs and publications relevant to transport phenomena in materials processing An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Materials Science of Polymers for Engineers

Author: Tim A. Osswald,Georg Menges

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 156990524X

Category: Technology & Engineering

Page: 688

View: 7207

This unified approach to polymer materials science is divided in three major sections: - Basic Principles - covering historical background, basic material properties, molecular structure, and thermal properties of polymers. - Influence of Processing on Properties - tying processing and design by discussing rheology of polymer melts, mixing and processing, the development of anisotropy, and solidification processes. - Engineering Design Properties - covering the different properties that need to be considered when designing a polymer component - from mechanical properties to failure mechanisms, electrical properties, acoustic properties, and permeability of polymers. A new chapter introducing polymers from a historical perspective not only makes the topic less dry, but also sheds light on the role polymers played, for better and worse, in shaping today's industrial world. The first edition was praised for the vast number of graphs and data that can be used as a reference. A new table in the appendix containing material property graphs for several polymers further strengthens this attribute. The most important change made to this edition is the introduction of real-world examples and a variety of problems at the end of each chapter.

Basic Equations of the Mass Transport Through a Membrane Layer

Author: Endre Nagy

Publisher: Elsevier

ISBN: 0124160255

Category: Science

Page: 329

View: 1554

With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation

Advances in Friction-Stir Welding and Processing

Author: M.-K. Besharati-Givi,P. Asadi

Publisher: Elsevier

ISBN: 0857094556

Category: Technology & Engineering

Page: 796

View: 9991

Friction-stir welding (FSW) is a solid-state joining process primarily used on aluminum, and is also widely used for joining dissimilar metals such as aluminum, magnesium, copper and ferrous alloys. Recently, a friction-stir processing (FSP) technique based on FSW has been used for microstructural modifications, the homogenized and refined microstructure along with the reduced porosity resulting in improved mechanical properties. Advances in friction-stir welding and processing deals with the processes involved in different metals and polymers, including their microstructural and mechanical properties, wear and corrosion behavior, heat flow, and simulation. The book is structured into ten chapters, covering applications of the technology; tool and welding design; material and heat flow; microstructural evolution; mechanical properties; corrosion behavior and wear properties. Later chapters cover mechanical alloying and FSP as a welding and casting repair technique; optimization and simulation of artificial neural networks; and FSW and FSP of polymers. Provides studies of the microstructural, mechanical, corrosion and wear properties of friction-stir welded and processed materials Considers heat generation, heat flow and material flow Covers simulation of FSW/FSP and use of artificial neural network in FSW/FSP

Conservation Equations And Modeling Of Chemical And Biochemical Processes

Author: Said S.E.H. Elnashaie,Parag Garhyan

Publisher: CRC Press

ISBN: 9780203911501

Category: Science

Page: 636

View: 6632

Presenting strategies in control policies, this text uses a systems theory approach to predict, simulate and streamline plant operation, conserve fuel and resources, and increase workplace safety in the manufacturing, chemical, petrochemical, petroleum, biochemical and energy industries. Topics of discussion include system theory and chemical/biochemical engineering systems, steady state, unsteady state, and thermodynamic equilibrium, modeling of systems, fundamental laws governing the processes in terms of the state variables, different classifications of physical models, the story of chemical engineering in relation to system theory and mathematical modeling, overall heat balance with single and multiple chemical reactions and single and multiple reactions.

Materials Processing and Manufacturing Science

Author: Rajiv Asthana,Ashok Kumar,Narendra B. Dahotre

Publisher: Elsevier

ISBN: 0080464882

Category: Technology & Engineering

Page: 656

View: 9752

“Materials Science in Manufacturing focuses on materials science and materials processing primarily for engineering and technology students preparing for careers in manufacturing. The text also serves as a useful reference on materials science for the practitioner engaged in manufacturing as well as the beginning graduate student. Integrates theoretical understanding and current practices to provide a resource for students preparing for advanced study or career in industry. Also serves as a useful resource to the practitioner who works with diverse materials and processes, but is not a specialist in materials science. This book covers a wider range of materials and processes than is customary in the elementary materials science books. This book covers a wider range of materials and processes than is customary in the elementary materials science books. * Detailed explanations of theories, concepts, principles and practices of materials and processes of manufacturing through richly illustrated text * Includes new topics such as nanomaterials and nanomanufacturing, not covered in most similar works * Focuses on the interrelationship between Materials Science, Processing Science, and Manufacturing Technology

Membranes for Clean and Renewable Power Applications

Author: A Gugliuzza,Angelo Basile

Publisher: Woodhead Publishing

ISBN: 0857098659

Category: Technology & Engineering

Page: 438

View: 4633

The development and deployment of membrane technologies continues to advance thanks to innovative materials and novel engineering approaches. Membranes for clean and renewable power applications introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications. Chapters in part one introduce the utilization of membrane technology in the production of clean and renewable power and the combining of membrane processes with renewable energy technologies. Part two focusses on membranes for biofuel production and processing including membranes and membrane reactors for the production of biodiesel and second generation biofuels. Part three discusses membranes for syngas, hydrogen and oxygen production and processing. Chapters highlight steam reforming of biofuels for the production of hydrogen-rich gas A., perovskite membrane reactors, and environmental analysis of hydrogen-methane blends for transportation. Chapters in part four explore membranes for fuel cells including ceramic membranes for intermediate temperature solid oxide fuel cells (SOFC), microbial fuel cells, and direct bioethanol fuel cells. Finally, part five discusses membranes integrated with solar, wind energy and water-related applications including membrane technologies for solar-hydrogen production, solar-desalination plants, and the storage as methane of energy generated by wind power and other renewable sources. A final chapter introduces wastewater processing, energy conservation and energy generation. Membranes for clean and renewable power applications is a comprehensive resource for professionals and consultants in the clean and renewable energy industry, membrane and materials scientists and professionals, and academics and researchers in the field. Introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications

Comprehensive Materials Processing

Author: N.A

Publisher: Newnes

ISBN: 0080965334

Category: Technology & Engineering

Page: 5634

View: 8992

Comprehensive Materials Processing provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources

Micromixers

Fundamentals, Design and Fabrication

Author: Nam-Trung Nguyen

Publisher: William Andrew

ISBN: 1437735215

Category: Technology & Engineering

Page: 368

View: 570

The ability to mix minute quantities of fluids is critical in a range of recent and emerging techniques in engineering, chemistry and life sciences, with applications as diverse as inkjet printing, pharmaceutical manufacturing, specialty and hazardous chemical manufacturing, DNA analysis and disease diagnosis. The multidisciplinary nature of this field – intersecting engineering, physics, chemistry, biology, microtechnology and biotechnology – means that the community of engineers and scientists now engaged in developing microfluidic devices has entered the field from a variety of different backgrounds. Micromixers is uniquely comprehensive, in that it deals not only with the problems that are directly related to fluidics as a discipline (aspects such as mass transport, molecular diffusion, electrokinetic phenomena, flow instabilities, etc.) but also with the practical issues of fabricating micomixers and building them into microsystems and lab-on-chip assemblies.With practical applications to the design of systems vital in modern communications, medicine and industry this book has already established itself as a key reference in an emerging and important field. The 2e includes coverage of a broader range of fabrication techniques, additional examples of fully realized devices for each type of micromixer and a substantially extended section on industrial applications, including recent and emerging applications. Introduces the design and applications of micromixers for a broad audience across chemical engineering, electronics and the life sciences, and applications as diverse as lab-on-a-chip, ink jet printing, pharmaceutical manufacturing and DNA analysis Helps engineers and scientists to unlock the potential of micromixers by explaining both the scientific (microfluidics) aspects and the engineering involved in building and using successful microscale systems and devices with micromixers The author's applied approach combines experience-based discussion of the challenges and pitfalls of using micromixers, with proposals for how to overcome them

Science and Engineering of Materials, SI Edition

Author: Donald R. Askeland,Wendelin J. Wright

Publisher: Cengage Learning

ISBN: 130544633X

Category: Technology & Engineering

Page: 960

View: 1051

Succeed in your materials science course with THE SCIENCE AND ENGINEERING OF MATERIALS, 7e. Filled with built-in study tools to help you master key concepts, this proven book will help you develop an understanding of the relationship between structure, processing, and properties of materials and will serve as a useful reference for future courses in manufacturing, materials, design, or materials selection. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Modeling in Materials Processing

Author: Jonathan A. Dantzig,Charles L. Tucker

Publisher: Cambridge University Press

ISBN: 9780521779234

Category: Computers

Page: 363

View: 2740

Mathematical modeling and computer simulation are useful tools for improving materials processing. While courses in materials processing have covered modeling, they have been devoted to one particular class of materials--polymers, metals, or ceramics. This text offers a new approach, presenting an integrated treatment of metallic and non-metallic materials. The authors show that a common base of knowledge--specifically, the fundamentals of heat transfer and fluid mechanics--unifies these seemingly disparate areas. They emphasize understanding basic physical phenomena and knowing how to include them in a model. The book also includes selected numerical methods, a wealth of practical, realistic examples, and homework exercises.

Polymer Process Engineering

Author: R. Griskey

Publisher: Springer Science & Business Media

ISBN: 9401105812

Category: Technology & Engineering

Page: 478

View: 7268

Polymers are ubiquitous and pervasive in industry, science, and technology. These giant molecules have great significance not only in terms of products such as plastics, films, elastomers, fibers, adhesives, and coatings but also less ob viously though none the less importantly in many leading industries (aerospace, electronics, automotive, biomedical, etc.). Well over half the chemists and chem ical engineers who graduate in the United States will at some time work in the polymer industries. If the professionals working with polymers in the other in dustries are taken into account, the overall number swells to a much greater total. It is obvious that knowledge and understanding of polymers is essential for any engineer or scientist whose professional activities involve them with these macromolecules. Not too long ago, formal education relating to polymers was very limited, indeed, almost nonexistent. Speaking from a personal viewpoint, I can recall my first job after completing my Ph.D. The job with E.I. Du Pont de Nemours dealt with polymers, an area in which I had no university training. There were no courses in polymers offered at my alma mater. My experience, incidentally, was the rule and not the exception.

Multifunctional and Nanoreinforced Polymers for Food Packaging

Author: José-María Lagarón

Publisher: Elsevier

ISBN: 0857092782

Category: Technology & Engineering

Page: 736

View: 8160

Recent developments in multifunctional and nanoreinforced polymers have provided the opportunity to produce high barrier, active and intelligent food packaging which can help ensure, or even enhance, the quality and safety of packaged foods. Multifunctional and nanoreinforced polymers for food packaging provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging. After an introductory chapter, Part one discusses nanofillers for plastics in food packaging. Chapters explore the use of passive and active nanoclays and hidrotalcites, cellulose nanofillers and electrospun nanofibers and nanocapsules. Part two investigates high barrier plastics for food packaging. Chapters assess the transport and high barrier properties of food packaging polymers such as ethylene-norbornene copolymers and advanced single-site polyolefins, nylon-MXD6 resins and ethylene-vinyl alcohol copolymers before going on to explore recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP), nanoscale inorganic coatings and functional barriers against migration. Part three reviews active and bioactive plastics in food packaging. Chapters investigate silver-based antimicrobial polymers, the incorporation of antimicrobial/antioxidant natural extracts into polymeric films, and biaoctive food packaging strategies. Part four examines nanotechnology in sustainable plastics with chapters examining the food packaging applications of polylactic acid (PLA) nanocomposites, polyhydroxyalkanoates (PHAs), starch-based polymers, chitosan and carragenan polysaccharides and protein-based resins for packaging gluten (WG)-based materials. The final chapter presents the safety and regulatory aspects of plastics as food packaging materials. With its distinguished editor and international team of expert contributors Multifunctional and nanoreinforced polymers for food packaging proves a valuable resource for researchers in packaging in the food industry and polymer scientists interested in multifunctional and nanoreinforced materials. Provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging Discusses nanofillers for plastics in food packaging including the use of passive and active nanoclays and hidrotalcites and electrospun nanofibers Investigates high barrier plastics for food packaging assessing recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP)