Topological Geometry

Author: Ian R. Porteous

Publisher: CUP Archive

ISBN: 9780521298391

Category: Mathematics

Page: 486

View: 3041

Provides a route from first principles through standard linear and quadratic algebra to geometric algebra, with Clifford's geometric algebras taking pride of place.

Topology, Geometry, and Gauge Fields

Foundations

Author: Gregory L. Naber

Publisher: Springer Science & Business Media

ISBN: 1475727429

Category: Mathematics

Page: 396

View: 534

Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

ISBN: 1475768486

Category: Mathematics

Page: 131

View: 6577

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 3875

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Geometry, Topology and Physics, Second Edition

Author: Mikio Nakahara

Publisher: CRC Press

ISBN: 9780750306065

Category: Mathematics

Page: 596

View: 5309

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Lecture Notes on Elementary Topology and Geometry

Author: I.M. Singer,J.A. Thorpe

Publisher: Springer

ISBN: 1461573475

Category: Mathematics

Page: 232

View: 9388

At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis.

Topology, Geometry, and Algebra

Interactions and New Directions : Conference on Algebraic Topology in Honor of R. James Milgram, August 17-21, 1999, Stanford University

Author: R. James Milgram,Alejandro Adem,Gunnar Carlsson,Ralph L. Cohen

Publisher: American Mathematical Soc.

ISBN: 082182063X

Category: Mathematics

Page: 255

View: 2451

This volume presents the proceedings from the conference on ``Topology, Geometry, and Algebra: Interactions and New Directions'' held in honor of R. James Milgram at Stanford University in August 1999. The meeting brought together distinguished researchers from a variety of areas related to algebraic topology and its applications. Papers in the book present a wide range of subjects, reflecting the nature of the conference. Topics include moduli spaces, configuration spaces, surgery theory, homotopy theory, knot theory, group actions, and more. Particular emphasis was given to the breadth of interaction between the different areas.

Algebraical and Topological Foundations of Geometry

Proceedings of a Colloquium Held in Utrecht, August 1959

Author: Hans Freudenthal

Publisher: Elsevier

ISBN: 1483184641

Category: Mathematics

Page: 216

View: 1173

Algebraical and Topological Foundations of Geometry contains the proceedings of the Colloquium on Algebraic and Topological Foundations of Geometry, held in Utrecht, the Netherlands in August 1959. The papers review the algebraical and topological foundations of geometry and cover topics ranging from the geometric algebra of the Möbius plane to the theory of parallels with applications to closed geodesies. Groups of homeomorphisms and topological descriptive planes are also discussed. Comprised of 26 chapters, this book introduces the reader to the theory of parallels with applications to closed geodesies; groups of homeomorphisms; complemented modular lattices; and topological descriptive planes. Subsequent chapters focus on collineation groups; exceptional algebras and exceptional groups; the connection between algebra and constructions with ruler and compasses; and the use of differential geometry and analytic group theory methods in foundations of geometry. Von Staudt projectivities of Moufang planes are also considered, and an axiomatic treatment of polar geometry is presented. This monograph will be of interest to students of mathematics.

From Geometry to Topology

Author: H. Graham Flegg

Publisher: Courier Corporation

ISBN: 0486138496

Category: Mathematics

Page: 208

View: 4687

Introductory text for first-year math students uses intuitive approach, bridges the gap from familiar concepts of geometry to topology. Exercises and Problems. Includes 101 black-and-white illustrations. 1974 edition.

Geometry and Topology

Author: Miles Reid,Balazs Szendroi

Publisher: Cambridge University Press

ISBN: 9780521848893

Category: Mathematics

Page: 196

View: 6180

Geometry provides a whole range of views on the universe, serving as the inspiration, technical toolkit and ultimate goal for many branches of mathematics and physics. This book introduces the ideas of geometry, and includes a generous supply of simple explanations and examples. The treatment emphasises coordinate systems and the coordinate changes that generate symmetries. The discussion moves from Euclidean to non-Euclidean geometries, including spherical and hyperbolic geometry, and then on to affine and projective linear geometries. Group theory is introduced to treat geometric symmetries, leading to the unification of geometry and group theory in the Erlangen program. An introduction to basic topology follows, with the Möbius strip, the Klein bottle and the surface with g handles exemplifying quotient topologies and the homeomorphism problem. Topology combines with group theory to yield the geometry of transformation groups,having applications to relativity theory and quantum mechanics. A final chapter features historical discussions and indications for further reading. With minimal prerequisites, the book provides a first glimpse of many research topics in modern algebra, geometry and theoretical physics. The book is based on many years' teaching experience, and is thoroughly class-tested. There are copious illustrations, and each chapter ends with a wide supply of exercises. Further teaching material is available for teachers via the web, including assignable problem sheets with solutions.

Topology, Geometry, and Gauge Fields

Interactions

Author: Gregory Naber

Publisher: Springer Science & Business Media

ISBN: 9780387989471

Category: Mathematics

Page: 446

View: 1852

A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.

Topology, Geometry, Integrable Systems, and Mathematical Physics

Novikov's Seminar 2012-2014

Author: V. M. Buchstaber,B. A. Dubrovin, I. M. Krichever

Publisher: American Mathematical Soc.

ISBN: 1470418711

Category: Mathematics

Page: 393

View: 9475

Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.

Topology, Geometry and Quantum Field Theory

Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal

Author: Graeme Segal,Ulrike Luise Tillmann

Publisher: Cambridge University Press

ISBN: 9780521540490

Category: Mathematics

Page: 577

View: 4460

The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

An Introduction to the Geometry and Topology of Fluid Flows

Author: Renzo L. Ricca

Publisher: Springer Science & Business Media

ISBN: 9401004463

Category: Science

Page: 347

View: 6864

Leading experts present a unique, invaluable introduction to the study of the geometry and typology of fluid flows. From basic motions on curves and surfaces to the recent developments in knots and links, the reader is gradually led to explore the fascinating world of geometric and topological fluid mechanics. Geodesics and chaotic orbits, magnetic knots and vortex links, continual flows and singularities become alive with more than 160 figures and examples. In the opening article, H. K. Moffatt sets the pace, proposing eight outstanding problems for the 21st century. The book goes on to provide concepts and techniques for tackling these and many other interesting open problems.

Topological Recursion and its Influence in Analysis, Geometry, and Topology

Author: Chiu-Chu Melissa Liu,Motohico Mulase

Publisher: American Mathematical Soc.

ISBN: 1470435411

Category: Topology

Page: 549

View: 873

This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

Topological Circle Planes and Topological Quadrangles

Author: Andreas E Schroth

Publisher: CRC Press

ISBN: 9780582288119

Category: Mathematics

Page: 168

View: 1412

This research note presents a complete treatment of the connection between topological circle planes and topological generalized quadrangles. The author uses this connection to provide a better understanding of the relationships between different types of circle planes and to solve a topological version of the problem of Apollonius. Topological Circle Planes and Topological Quadrangles begins with a foundation in classical circle planes and the real symmetric generalized quadrangle and the connection between them. This provides a solid base from which the author offers a more generalized exploration of the topological case. He also compares this treatment to the finite case. Subsequent chapters examine Laguerre, Möbius, and Minkowski planes and their respective relationships to antiregular quadrangles. The author addresses the Lie geometry of each and discuss the relationships of circle planes-the "sisters" of Möbius, Laguerre, and Minkowski planes - and concludes by solving a topological version of the problem of Apollonius in Laguerre, Möbius, and Minkowski planes. The treatment offered in this volume offers complete coverage of the topic. The first part of the text is accessible to anyone with a background in analytic geometry, while the second part requires basic knowledge in general and algebraic topology. Researchers interested in geometry-particularly in topological geometry-will find this volume intriguing and informative. Most of the results presented are new and can be applied to various problems in the field of topological circle planes. Features

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 6040

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.