Mathematical Topics in Fluid Mechanics

Volume 1: Incompressible Models

Author: Pierre-Louis Lions

Publisher: OUP Oxford

ISBN: 9780199679218

Category: Mathematics

Page: 252

View: 3092

One of the most challenging topics in applied mathematics has been the development of the theory of nonlinear partial differential equations. Despite a long history of contributions, there exists no central core theory. This two volume work forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models.

Topics in Mathematical Fluid Mechanics

Cetraro, Italy 2010, Editors: Hugo Beirão da Veiga, Franco Flandoli

Author: Peter Constantin,Arnaud Debussche,Giovanni P. Galdi,Michael Růžička,Gregory Seregin

Publisher: Springer

ISBN: 3642362974

Category: Mathematics

Page: 313

View: 9353

This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.

Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models

Author: Pierre-Louis Lions

Publisher: Oxford University Press on Demand

ISBN: 9780198514886

Category: Mathematics

Page: 348

View: 1818

Fluid mechanics models consist of systems of nonlinear partial differential equations for which, despite a long history of important mathematical contributions, no complete mathematical understanding is available. The second volume of this book describes compressible fluid-mechanics models. The book contains entirely new material on a subject known to be rather difficult and important for applications (compressible flows). It is probably a unique effort on the mathematical problems associated with the compressible Navier-Stokes equations, written by one of the world's leading experts on nonlinear partial differential equations. Professor P.L. Lions won the Fields Medal in 1994.

Advances in Mathematical Fluid Mechanics

Lecture Notes of the Sixth International School Mathematical Theory in Fluid Mechanics, Paseky, Czech Republic, Sept. 19–26, 1999

Author: Josef Malek,Jindrich Necas,Mirko Rokyta

Publisher: Springer Science & Business Media

ISBN: 3642573088

Category: Mathematics

Page: 236

View: 381

This book consists of six survey contributions that are focused on several open problems of theoretical fluid mechanics both for incompressible and compressible fluids. The first article "Viscous flows in Besov spaces" by M area Cannone ad dresses the problem of global existence of a uniquely defined solution to the three-dimensional Navier-Stokes equations for incompressible fluids. Among others the following topics are intensively treated in this contribution: (i) the systematic description of the spaces of initial conditions for which there exists a unique local (in time) solution or a unique global solution for small data, (ii) the existence of forward self-similar solutions, (iii) the relation of these results to Leray's weak solutions and backward self-similar solutions, (iv) the extension of the results to further nonlinear evolutionary problems. Particular attention is paid to the critical spaces that are invariant under the self-similar transform. For sufficiently small Reynolds numbers, the conditional stability in the sense of Lyapunov is also studied. The article is endowed by interesting personal and historical comments and an exhaustive bibliography that gives the reader a complete picture about available literature. The papers "The dynamical system approach to the Navier-Stokes equa tions for compressible fluids" by Eduard Feireisl, and "Asymptotic problems and compressible-incompressible limits" by Nader Masmoudi are devoted to the global (in time) properties of solutions to the Navier-Stokes equa and three tions for compressible fluids. The global (in time) analysis of two dimensional motions of compressible fluids were left open for many years.

Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models

Author: Pierre-Louis Lions

Publisher: Clarendon Press

ISBN: 9780198514879

Category: Science

Page: 252

View: 5253

One of the most challenging topics in applied mathematics over the past decades has been the development of the theory of nonlinear partial differential equations. Many of the problems in mechanics, geometry, probability, etc. lead to such equations when formulated in mathematical terms. However despite a long history of contributions, there exists no central core theory, and the most important advances have come from the study of particular equations and classes of equations arising in specific applications. This two volume work forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations like the incompressible and compressible Navier-Stokes equations. The main emphasis in Volume 1 is on the mathematical analysis of incompressible models. After recalling the fundamental description of Newtonian fluids, an original and self-contained study of both the classical Navier-Stokes equations (including the inhomogeneous case) and the Euler equations is given. Known results and many new results about the existence and regularity of solutions are presented with complete proofs. The discussion contains many interesting insights and remarks. The text highlights in particular the use of modern analytical tools and methods and also indicates many open problems. Volume 2 will be devoted to essentially new results for compressible models. Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena.

New Directions in Mathematical Fluid Mechanics

The Alexander V. Kazhikhov Memorial Volume

Author: Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V. Pukhnachev

Publisher: Springer Science & Business Media

ISBN: 3034601522

Category: Science

Page: 432

View: 9531

On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.

Mathematical Fluid Mechanics

Recent Results and Open Questions

Author: Jiri Neustupa,Patrick Penel

Publisher: Birkhäuser

ISBN: 3034882432

Category: Mathematics

Page: 269

View: 8279

Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.

Mathematical Topics in Fluid Mechanics

Author: Jose Francisco Rodrigues,Adelia Sequeira

Publisher: CRC Press

ISBN: 9780582209541

Category: Mathematics

Page: 280

View: 6635

This Research Note presents several contributions and mathematical studies in fluid mechanics, namely in non-Newtonian and viscoelastic fluids and on the Navier-Stokes equations in unbounded domains. It includes review of the mathematical analysis of incompressible and compressible flows and results in magnetohydrodynamic and electrohydrodynamic stability and thermoconvective flow of Boussinesq-Stefan type. These studies, along with brief communications on a variety of related topics comprise the proceedings of a summer course held in Lisbon, Portugal in 1991. Together they provide a set of comprehensive survey and advanced introduction to problems in fluid mechanics and partial differential equations.

Topics in Fluid Mechanics

Author: René Chevray,Jean Mathieu

Publisher: Cambridge University Press

ISBN: 9780521422727

Category: Science

Page: 320

View: 6773

This book offers a novel but unified treatment of an established subject. Rather than describe the standard topics in fluid mechanics in traditional form, the book presents each topic as part of a wider class of problems so that a unity of concepts is emphasized over a unity of material.

Mathematical Analysis in Fluid Mechanics: Selected Recent Results

Author: Raphaël Danchin,Reinhard Farwig,Jiří Neustupa,Patrick Penel

Publisher: American Mathematical Soc.

ISBN: 1470436469

Category: Fluid mechanics

Page: N.A

View: 4288

This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.

Fundamental Directions in Mathematical Fluid Mechanics

Author: Giovanni P. Galdi,John G. Heywood,Rolf Rannacher

Publisher: Birkhäuser

ISBN: 3034884249

Category: Mathematics

Page: 293

View: 2015

This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.

Handbook of Mathematical Fluid Dynamics

Author: S. Friedlander,D. Serre

Publisher: Elsevier

ISBN: 9780080472911

Category: Science

Page: 680

View: 3901

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.

Mathematical Fluid Dynamics, Present and Future

Tokyo, Japan, November 2014

Author: Yoshihiro Shibata,Yukihito Suzuki

Publisher: Springer

ISBN: 4431564578

Category: Mathematics

Page: 613

View: 2733

This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

Featured Reviews in Mathematical Reviews 1997-1999

With Selected Reviews of Classic Books and Papers from 1940-1969

Author: Donald G. Babbitt,Jane E. Kister

Publisher: American Mathematical Soc.

ISBN: 9780821896709

Category: Mathematics

Page: 541

View: 4983

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.

Contributions to Current Challenges in Mathematical Fluid Mechanics

Author: Giovanni P. Galdi,Malcolm I. Heywood,Rolf Rannacher

Publisher: Springer Science & Business Media

ISBN: 9783764371043

Category: Science

Page: 152

View: 7569

This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier Stokes equations in which he added in the linear momentum equation the hyper dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct

Solution Sets of Differential Equations in Abstract Spaces

Author: Robert Dragoni,Paolo Nistri,Pietro Zecca,Jack W Macki

Publisher: CRC Press

ISBN: 9780582294509

Category: Mathematics

Page: 120

View: 5136

This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.

Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models

Author: F. Giannessi,A. Maugeri,Panos M. Pardalos

Publisher: Springer Science & Business Media

ISBN: 1402001614

Category: Computers

Page: 300

View: 1981

The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.

Linear Theory of Colombeau Generalized Functions

Author: M Nedeljkov,S Pilipovic,D Scarpalezos

Publisher: CRC Press

ISBN: 9780582356832

Category: Mathematics

Page: 168

View: 5267

Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.

Lectures on Topological Fluid Mechanics

Lectures Given at the C.I.M.E. Summer School Held in Cetraro, Italy, July 2 - 10, 2001

Author: Mitchell A. Berger,Louis H. Kauffman,Boris Khesin,H. Keith Moffatt,De Witt Sumners

Publisher: Springer Science & Business Media

ISBN: 3642008364

Category: Mathematics

Page: 221

View: 7986

This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.