Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260593

Category: Mathematics

Page: 368

View: 5908

Skip to content
# Nothing Found

### The Mathematical Theory of Coding

The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.

### The Mathematics of Coding Theory

This book makes a very accessible introduction to a very important contemporary application of number theory, abstract algebra, and probability. It contains numerous computational examples throughout, giving learners the opportunity to apply, practice, and check their understanding of key concepts. KEY TOPICS Coverage starts from scratch in treating probability, entropy, compression, Shannon¿s theorems, cyclic redundancy checks, and error-correction. For enthusiasts of abstract algebra and number theory.

### The Mathematical Theory of Information

The general concept of information is here, for the first time, defined mathematically by adding one single axiom to the probability theory. This Mathematical Theory of Information is explored in fourteen chapters: 1. Information can be measured in different units, in anything from bits to dollars. We will here argue that any measure is acceptable if it does not violate the Law of Diminishing Information. This law is supported by two independent arguments: one derived from the Bar-Hillel ideal receiver, the other is based on Shannon's noisy channel. The entropy in the 'classical information theory' is one of the measures conforming to the Law of Diminishing Information, but it has, however, properties such as being symmetric, which makes it unsuitable for some applications. The measure reliability is found to be a universal information measure. 2. For discrete and finite signals, the Law of Diminishing Information is defined mathematically, using probability theory and matrix algebra. 3. The Law of Diminishing Information is used as an axiom to derive essential properties of information. Byron's law: there is more information in a lie than in gibberish. Preservation: no information is lost in a reversible channel. Etc. The Mathematical Theory of Information supports colligation, i. e. the property to bind facts together making 'two plus two greater than four'. Colligation is a must when the information carries knowledge, or is a base for decisions. In such cases, reliability is always a useful information measure. Entropy does not allow colligation.

### Fundamentals of Information Theory and Coding Design

Books on information theory and coding have proliferated over the last few years, but few succeed in covering the fundamentals without losing students in mathematical abstraction. Even fewer build the essential theoretical framework when presenting algorithms and implementation details of modern coding systems. Without abandoning the theoretical foundations, Fundamentals of Information Theory and Coding Design presents working algorithms and implementations that can be used to design and create real systems. The emphasis is on the underlying concepts governing information theory and the mathematical basis for modern coding systems, but the authors also provide the practical details of important codes like Reed-Solomon, BCH, and Turbo codes. Also setting this text apart are discussions on the cascading of information channels and the additivity of information, the details of arithmetic coding, and the connection between coding of extensions and Markov modelling. Complete, balanced coverage, an outstanding format, and a wealth of examples and exercises make this an outstanding text for upper-level students in computer science, mathematics, and engineering and a valuable reference for telecommunications engineers and coding theory researchers.

### Mathematical Foundations of Information Theory

First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.

### Mathematics of Information and Coding

This book is intended to provide engineering and/or statistics students, communications engineers, and mathematicians with the firm theoretic basis of source coding (or data compression) in information theory. Although information theory consists of two main areas, source coding and channel coding, the authors choose here to focus only on source coding. The reason is that, in a sense, it is more basic than channel coding, and also because of recent achievements in source coding and compression. An important feature of the book is that whenever possible, the authors describe universal coding methods, i.e., the methods that can be used without prior knowledge of the statistical properties of the data. The authors approach the subject of source coding from the very basics to the top frontiers in an intuitively transparent, but mathematically sound, manner. The book serves as a theoretical reference for communication professionals and statisticians specializing in information theory. It will also serve as an excellent introductory text for advanced-level and graduate students taking elementary or advanced courses in telecommunications, electrical engineering, statistics, mathematics, and computer science.

### Selected Unsolved Problems in Coding Theory

Using an original mode of presentation, and emphasizing the computational nature of the subject, this book explores a number of the unsolved problems that still exist in coding theory. A well-established and highly relevant branch of mathematics, the theory of error-correcting codes is concerned with reliably transmitting data over a ‘noisy’ channel. Despite frequent use in a range of contexts, the subject still contains interesting unsolved problems that have resisted solution by some of the most prominent mathematicians of recent decades. Employing Sage—a free open-source mathematics software system—to illustrate ideas, this book is intended for graduate students and researchers in algebraic coding theory. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study.

### Different Aspects of Coding Theory

This book connects coding theory with actual applications in consumer electronics and with other areas of mathematics. Different Aspects of Coding Theory covers in detail the mathematical foundations of digital data storage and makes connections to symbolic dynamics, linear systems, and finite automata. It also explores the use of algebraic geometry within coding theory and examines links with finite geometry, statistics, and theoretical computer science. Features: A unique combination of mathematical theory and engineering practice. Much diversity and variety among chapters, thus offering broad appeal. Topics relevant to mathematicians, statisticians, engineers, and computer scientists. Contributions by recognized scholars.

### Coding Theory and Cryptology

The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.

### Coding Theory and Number Theory

This book grew out of our lectures given in the Oberseminar on 'Cod ing Theory and Number Theory' at the Mathematics Institute of the Wiirzburg University in the Summer Semester, 2001. The coding the ory combines mathematical elegance and some engineering problems to an unusual degree. The major advantage of studying coding theory is the beauty of this particular combination of mathematics and engineering. In this book we wish to introduce some practical problems to the math ematician and to address these as an essential part of the development of modern number theory. The book consists of five chapters and an appendix. Chapter 1 may mostly be dropped from an introductory course of linear codes. In Chap ter 2 we discuss some relations between the number of solutions of a diagonal equation over finite fields and the weight distribution of cyclic codes. Chapter 3 begins by reviewing some basic facts from elliptic curves over finite fields and modular forms, and shows that the weight distribution of the Melas codes is represented by means of the trace of the Hecke operators acting on the space of cusp forms. Chapter 4 is a systematic study of the algebraic-geometric codes. For a long time, the study of algebraic curves over finite fields was the province of pure mathematicians. In the period 1977 - 1982, V. D. Goppa discovered an amazing connection between the theory of algebraic curves over fi nite fields and the theory of q-ary codes.

### Introduction to Coding Theory

This 2006 book introduces the theoretical foundations of error-correcting codes for senior-undergraduate to graduate students.

### Introduction to the Theory of Error-Correcting Codes

A complete introduction to the many mathematical tools used to solve practical problems in coding. Mathematicians have been fascinated with the theory of error-correcting codes since the publication of Shannon's classic papers fifty years ago. With the proliferation of communications systems, computers, and digital audio devices that employ error-correcting codes, the theory has taken on practical importance in the solution of coding problems. This solution process requires the use of a wide variety of mathematical tools and an understanding of how to find mathematical techniques to solve applied problems. Introduction to the Theory of Error-Correcting Codes, Third Edition demonstrates this process and prepares students to cope with coding problems. Like its predecessor, which was awarded a three-star rating by the Mathematical Association of America, this updated and expanded edition gives readers a firm grasp of the timeless fundamentals of coding as well as the latest theoretical advances. This new edition features: * A greater emphasis on nonlinear binary codes * An exciting new discussion on the relationship between codes and combinatorial games * Updated and expanded sections on the Vashamov-Gilbert bound, van Lint-Wilson bound, BCH codes, and Reed-Muller codes * Expanded and updated problem sets. Introduction to the Theory of Error-Correcting Codes, Third Edition is the ideal textbook for senior-undergraduate and first-year graduate courses on error-correcting codes in mathematics, computer science, and electrical engineering.

### Introduction to Coding Theory

Coding theory is still a young subject. One can safely say that it was born in 1948. It is not surprising that it has not yet become a fixed topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One of the most suitable and fascinating is, indeed, coding theory. So, it is not surprising that one more book on this subject now appears. However, a little more justification of the book are necessary. A few years ago it was and a little more history remarked at a meeting on coding theory that there was no book available an introductory course on coding theory (mainly which could be used for for mathematicians but also for students in engineering or computer science). The best known textbooks were either too old, too big, too technical, too much for specialists, etc. The final remark was that my Springer Lecture Notes (# 201) were slightly obsolete and out of print. Without realizing what I was getting into I announced that the statement was not true and proved this by showing several participants the book Inleiding in de Coderingstheorie, a little book based on the syllabus of a course given at the Mathematical Centre in Amsterdam in 1975 (M. C. Syllabus 31).

### Information Theory

DIVAnalysis of channel models and proof of coding theorems; study of specific coding systems; and study of statistical properties of information sources. Sixty problems, with solutions. Advanced undergraduate to graduate level. /div

### Information Theory

Celebrating 50 years since the discovery of information theory by Claude Shannon, this book consists to the 50 best tutorials in the area compiled by the editors of the "IEEE Transactions on Information Theory." These articles cover the technologies at the heart of communications, signal processing, computer and control systems and serve as a valuable guide for all those interested in the basis for information theory.

### Codes: An Introduction to Information Communication and Cryptography

Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.

### Algebraic Geometry in Coding Theory and Cryptography

This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books

### Combinatorial Complexes

It isn't that they can't see the Approach your problems from the right end and begin with the solution. It is that they can't see answers. Then, one day, perhaps the problem. you will find the final question. 'The Hermit Clad in Crane Feathers' G. K. Chesterton, The scandal of in R. Van Gulik's The Chinese Maze Father Brown "The point of a Murders. pin" Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crys tal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Full PDF eBook Download Free

Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260593

Category: Mathematics

Page: 368

View: 5908

*Information, Compression, Error Correction, and Finite Fields*

Author: Paul B. Garrett

Publisher: Prentice Hall

ISBN: 9780131019676

Category: Computers

Page: 398

View: 386

Author: Jan Kåhre

Publisher: Springer Science & Business Media

ISBN: 1461509750

Category: Technology & Engineering

Page: 502

View: 9700

Author: Roberto Togneri,Christopher J.S deSilva

Publisher: CRC Press

ISBN: 9780203998106

Category: Mathematics

Page: 385

View: 6851

Author: Aleksandr I?Akovlevich Khinchin

Publisher: Courier Corporation

ISBN: 0486604349

Category: Mathematics

Page: 120

View: 8227

Author: Te Sun Han,Kingo Kobayashi

Publisher: American Mathematical Soc.

ISBN: 9780821842560

Category: Mathematics

Page: 286

View: 560

Author: David Joyner,Jon-Lark Kim

Publisher: Springer Science & Business Media

ISBN: 9780817682569

Category: Mathematics

Page: 248

View: 3287

*American Mathematical Society Short Course, January 2-3, 1995, San Francisco, California*

Author: Robert Calderbank

Publisher: American Mathematical Soc.

ISBN: 0821803794

Category: Computers

Page: 239

View: 3915

Author: Harald Niederreiter

Publisher: World Scientific

ISBN: 9789812384508

Category: Mathematics

Page: 446

View: 7569

Author: T. Hiramatsu,Günter Köhler

Publisher: Springer Science & Business Media

ISBN: 9401703051

Category: Computers

Page: 148

View: 9291

Author: Ron Roth

Publisher: Cambridge University Press

ISBN: 9780521845045

Category: Computers

Page: 566

View: 9442

Author: Vera Pless

Publisher: John Wiley & Sons

ISBN: 1118030990

Category: Mathematics

Page: 224

View: 5910

Author: J. H. van Lint

Publisher: Springer Science & Business Media

ISBN: 3662079984

Category: Mathematics

Page: 174

View: 9229

Author: Robert B. Ash

Publisher: Courier Corporation

ISBN: 0486141454

Category: Technology & Engineering

Page: 352

View: 9386

*50 Years of Discovery*

Author: Sergio Verdú,Steven W. McLaughlin,IEEE Information Theory Society

Publisher: Wiley-IEEE Press

ISBN: 9780780353633

Category: Technology & Engineering

Page: 758

View: 2590

Author: Norman L. Biggs

Publisher: Springer Science & Business Media

ISBN: 9781848002739

Category: Computers

Page: 274

View: 8823

Author: Harald Niederreiter,Chaoping Xing

Publisher: Princeton University Press

ISBN: 9781400831302

Category: Mathematics

Page: 272

View: 7890

*A Mathematical Theory of Algorithms*

Author: P.H. Sellers

Publisher: Springer Science & Business Media

ISBN: 940099463X

Category: Computers

Page: 184

View: 2615