Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 4844

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Statistical Data Mining and Knowledge Discovery

Author: Hamparsum Bozdogan

Publisher: CRC Press

ISBN: 0203497155

Category: Business & Economics

Page: 624

View: 5243

Massive data sets pose a great challenge to many cross-disciplinary fields, including statistics. The high dimensionality and different data types and structures have now outstripped the capabilities of traditional statistical, graphical, and data visualization tools. Extracting useful information from such large data sets calls for novel approaches that meld concepts, tools, and techniques from diverse areas, such as computer science, statistics, artificial intelligence, and financial engineering. Statistical Data Mining and Knowledge Discovery brings together a stellar panel of experts to discuss and disseminate recent developments in data analysis techniques for data mining and knowledge extraction. This carefully edited collection provides a practical, multidisciplinary perspective on using statistical techniques in areas such as market segmentation, customer profiling, image and speech analysis, and fraud detection. The chapter authors, who include such luminaries as Arnold Zellner, S. James Press, Stephen Fienberg, and Edward K. Wegman, present novel approaches and innovative models and relate their experiences in using data mining techniques in a wide range of applications.

Creating Knowledge-based Healthcare Organizations

Author: Nilmini Wickramasinghe,Jatinder N. D. Gupta,Sushil K. Sharma

Publisher: IGI Global

ISBN: 9781591404606

Category: Medical

Page: 368

View: 9725

Creating Knowledge Based Healthcare Organizations brings together high quality concepts closely related to how knowledge management can be utilized in healthcare. It includes the methodologies, systems, and approaches needed to create and manage knowledge in various types of healthcare organizations. Furthermore, it has a global flavor, as we discuss knowledge management approaches in healthcare organizations throughout the world. For the first time, many of the concepts, tools, and techniques relevant to knowledge management in healthcare are available, offereing the reader an understanding of all the components required to utilize knowledge.

School of Nursing

Author: University of California, San Francisco. School of Nursing

Publisher: N.A

ISBN: N.A

Category: Nursing

Page: N.A

View: 7070


Social Determinants of Health and Knowledge About Hiv/Aids Transmission Among Adolescents

Author: Godwin C. Osakwe MBA MPH PhD

Publisher: iUniverse

ISBN: 1532065647

Category: Education

Page: 132

View: 958

Godwin C. Osakwe draws on his academic knowledge and painstaking research to determine if there’s a link between knowledge and transmission of HIV/AIDS among youths in this important study. The author, who holds a doctorate degree in public health and a business management degree, shares broad information and engages in a comprehensive review of the origin of the disease. Focusing on Nigeria, he examines a multitude of factors that may play a role in the transmission of HIV, such as adolescent health care, demographics, social factors, and more. The goal of the study is to lessen HIV transmission by increasing knowledge about the disease. Governmental and nongovernmental organizations can use its findings to influence childhood health-care improvements and advance education to help reduce or eradicate HIV/AIDS transmission. With adolescents making up 23 percent of Nigeria’s population—and given this group is likely to engage in risky behavior—there’s never been a more critical time to strive to prevent the transmission of this devastating and, still, deadly virus.

Smart Data Analytics

Mit Hilfe von Big Data Zusammenhänge erkennen und Potentiale nutzen

Author: Andreas Wierse,Till Riedel

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110461919

Category: Technology & Engineering

Page: 440

View: 5943

Wenn in Datenbergen wertvolle Geheimnisse schlummern, aus denen Profit erzielt werden soll, dann geht es um Big Data. Doch wie schöpft man aus »großen Daten« echte Werte, wenn man nicht gerade Google ist? Um aus Unternehmens-, Maschinen- oder Sensordaten einen Ertrag zu erzielen, reicht Big Data-Technologie allein nicht aus. Entscheidend sind die übergeordneten Innovations prozesse: die smarte Analyse von Big Data. Erst durch den kompetenten Einsatz der richtigen Werkzeuge und Techniken werden aus Big Data tatsächlich Smart Data. Das Praxishandbuch Smart Data Analytics gibt einen Überblick über die Technologie, die bei der Analyse von großen und heterogenen Datenmengen – inklusive Echtzeitdaten – zum Einsatz kommt. Elf Praxisbeispiele zeigen die konkrete Anwendung in kleinen und mittelständischen Unternehmen. So erfahren Sie, wie Sie Ihr Smart Data Analytics-Projekt in Ihrem eigenen Unternehmen vorbereiten und umsetzen können. Das Buch erläutert neben den organisatorischen Aspekten auch die rechtlichen Rahmenbedingungen. Und es zeigt, wie Sie sowohl den Nutzen bewerten können, der aus den Daten gezogen werden soll, als auch den Aufwand, den Sie dafür betreiben müssen. Denn Smart Data steht für mehr als nur die Untersuchung großer Datenmengen: Smart Data Analytics ist der Schlüssel zu einem smarten Umgang mit Ihren Unternehmensdaten und hilft, bislang unentdecktes Potenzial zu entdecken. Dr. Andreas Wierse studierte Mathematik und promovierte in den Ingenieurwissenschaften im Bereich Visualisierung, seit 2011 unterstützt er mittelständische Unternehmen rund um Big und Smart Data Technologie. Dr. Till Riedel lehrt als Informatiker am KIT und koordiniert im Smart Data Solution Center Baden-Württemberg und Smart Data Innovation Lab Forschung und Innovation auf industriellen Datenschätzen.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 3795

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Visualize This!

Author: Nathan Yau

Publisher: John Wiley & Sons

ISBN: 3527760229

Category: Statistics / Graphic methods / Data processing

Page: 422

View: 565

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 7871


Should We Risk It?

Exploring Environmental, Health, and Technological Problem Solving

Author: Daniel M. Kammen,David M. Hassenzahl

Publisher: Princeton University Press

ISBN: 9780691074573

Category: Political Science

Page: 404

View: 3769

How dangerous is smoking? What are the risks of nuclear power or of climate change? What are the chances of dying on an airplane? More importantly, how do we use this information once we have it? The demand for risk analysts who are able to answer such questions has grown exponentially in recent years. Yet programs to train these analysts have not kept pace. In this book, Daniel Kammen and David Hassenzahl address that problem. They draw together, organize, and seek to unify previously disparate theories and methodologies connected with risk analysis for health, environmental, and technological problems. They also provide a rich variety of case studies and worked problems, meeting the growing need for an up-to-date book suitable for teaching and individual learning. The specific problems addressed in the book include order-of-magnitude estimation, dose-response calculations, exposure assessment, extrapolations and forecasts based on experimental or natural data, modeling and the problems of complexity in models, fault-tree analysis, managing and estimating uncertainty, and social theories of risk and risk communication. The authors cover basic and intermediate statistics, as well as Monte Carlo methods, Bayesian analysis, and various techniques of uncertainty and forecast evaluation. The volume's unique approach will appeal to a wide range of people in environmental science and studies, health care, and engineering, as well as to policy makers confronted by the increasing number of decisions requiring risk and cost/benefit analysis. Should We Risk It? will become a standard text in courses involving risk and decision analysis and in courses of applied statistics with a focus on environmental and technological issues.

Big Data

Die Revolution, die unser Leben verändern wird

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 1608

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.