Statistical Methods for Spatio-Temporal Systems

Author: Barbel Finkenstadt,Leonhard Held,Valerie Isham

Publisher: CRC Press

ISBN: 1420011057

Category: Mathematics

Page: 286

View: 4045

Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time covariance functions. The contributors then describe stochastic and statistical models that are used to generate simulated rainfall sequences for hydrological use, such as flood risk assessment. The final chapter explores Gaussian Markov random field specifications and Bayesian computational inference via Gibbs sampling and Markov chain Monte Carlo, illustrating the methods with a variety of data examples, such as temperature surfaces, dioxin concentrations, ozone concentrations, and a well-established deterministic dynamical weather model.

Statistics for Spatio-Temporal Data

Author: Noel Cressie,Christopher K. Wikle

Publisher: John Wiley & Sons

ISBN: 1119243068

Category: Mathematics

Page: 512

View: 1125

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition

Author: Peter J. Diggle

Publisher: CRC Press

ISBN: 146656024X

Category: Mathematics

Page: 268

View: 6400

Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.

Spatial and Spatio-temporal Bayesian Models with R - INLA

Author: Marta Blangiardo,Michela Cameletti

Publisher: John Wiley & Sons

ISBN: 1118326555

Category: Mathematics

Page: 320

View: 5928

Spatial and Spatio–Temporal Bayesian Models with R–INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio­–temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R–INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations

Introduction to Statistical Methods for Biosurveillance

With an Emphasis on Syndromic Surveillance

Author: Ronald D. Fricker

Publisher: Cambridge University Press

ISBN: 1107328063

Category: Medical

Page: N.A

View: 8171

Bioterrorism is not a new threat, but in an increasingly interconnected world, the potential for catastrophic outcomes is greater today than ever. The medical and public health communities are establishing biosurveillance systems designed to proactively monitor populations for possible disease outbreaks as a first line of defense. The ideal biosurveillance system should identify trends not visible to individual physicians and clinicians in near-real time. Many of these systems use statistical algorithms to look for anomalies and to trigger epidemiologic investigation, quantification, localization and outbreak management. This book discusses the design and evaluation of statistical methods for effective biosurveillance for readers with minimal statistical training. Weaving public health and statistics together, it presents basic and more advanced methods, with a focus on empirically demonstrating added value. Although the emphasis is on epidemiologic and syndromic surveillance, the statistical methods can be applied to a broad class of public health surveillance problems.

Filtering Complex Turbulent Systems

Author: Andrew J. Majda,John Harlim

Publisher: Cambridge University Press

ISBN: 1107016665

Category: Mathematics

Page: 357

View: 5985

The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems. The book contains background material from filtering, turbulence theory and numerical analysis, making it suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required.

Application of Pattern Recognition and Adaptive DSP Methods for Spatio-temporal Analysis of Satellite Based Hydrological Datasets

Author: Anish Chand Turlapaty

Publisher: Universal-Publishers

ISBN: 1599423367


Page: N.A

View: 3208

Data assimilation of satellite-based observations of hydrological variables with full numerical physics models can be used to downscale these observations from coarse to high resolution to improve microwave sensor-based soil moisture observations. Moreover, assimilation can also be used to predict related hydrological variables, e.g., precipitation products can be assimilated in a land information system to estimate soil moisture. High quality spatio-temporal observations of these processes are vital for a successful assimilation which in turn needs a detailed analysis and improvement. In this research, pattern recognition and adaptive signal processing methods are developed for the spatio-temporal analysis and enhancement of soil moisture and precipitation datasets. These methods are applied to accomplish the following tasks: (i) a consistency analysis of level-3 soil moisture data from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) against in-situ soil moisture measurements from the USDA Soil Climate Analysis Network (SCAN). This method performs a consistency assessment of the entire time series in relation to others and provides a spatial distribution of consistency levels. The methodology is based on a combination of wavelet-based feature extraction and oneclass support vector machines (SVM) classifier. Spatial distribution of consistency levels are presented as consistency maps for a region, including the states of Mississippi, Arkansas, and Louisiana. These results are well correlated with the spatial distributions of average soil moisture, and the cumulative counts of dense vegetation; (ii) a modified singular spectral analysis based interpolation scheme is developed and validated on a few geophysical data products including GODAE's high resolution sea surface temperature (GHRSST). This method is later employed to fill the systematic gaps in level-3 AMSR-E soil moisture dataset; (iii) a combination of artificial neural networks and vector space transformation function is used to fuse several high resolution precipitation products (HRPP). The final merged product is statistically superior to any of the individual datasets over a seasonal period. The results have been tested against ground based measurements of rainfall over our study area and average accuracies obtained are 85% in the summer and 55% in the winter 2007.

Inter-area Oscillations in Power Systems

A Nonlinear and Nonstationary Perspective

Author: Arturo Roman Messina

Publisher: Springer Science & Business Media

ISBN: 9780387895307

Category: Technology & Engineering

Page: 275

View: 4864

The study of complex dynamic processes governed by nonlinear and nonstationary characteristics is a problem of great importance in the analysis and control of power system oscillatory behavior. Power system dynamic processes are highly random, nonlinear to some extent, and intrinsically nonstationary even over short time intervals as in the case of severe transient oscillations in which switching events and control actions interact in a complex manner. Phenomena observed in power system oscillatory dynamics are diverse and complex. Measured ambient data are known to exhibit noisy, nonstationary fluctuations resulting primarily from small magnitude, random changes in load, driven by low-scale motions or nonlinear trends originating from slow control actions or changes in operating conditions. Forced oscillations resulting from major cascading events, on the other hand, may contain motions with a broad range of scales and can be highly nonlinear and time-varying. Prediction of temporal dynamics, with the ultimate application to real-time system monitoring, protection and control, remains a major research challenge due to the complexity of the driving dynamic and control processes operating on various temporal scales that can become dynamically involved. An understanding of system dynamics is critical for reliable inference of the underlying mechanisms in the observed oscillations and is needed for the development of effective wide-area measurement and control systems, and for improved operational reliability.

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 680

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Spatio-temporal Approaches

Geographic Objects and Change Process

Author: Hélène Mathian,Lena Sanders

Publisher: John Wiley & Sons

ISBN: 1848215525

Category: Science

Page: 176

View: 5801

Spatio-temporal Approaches presents a well-built set of concepts, methods and approaches, in order to represent and understand the evolution of social and environmental phenomena within the space. It is basedon examples in human geography and archeology (which will enable us to explore questions regarding various temporalities) and tackles social and environmental phenomena. Chapter 1 discusses how to apprehend change: objects, attributes, relations, processes. Chapter 2 introduces multiple points of view about modeling and the authors try to shed a new light on the different, but complementary approaches of geomaticians and thematicians. Chapter 3 is devoted to the construction of spatio-temporal indicators, to various measurements of the change, while highlighting the advantage of an approach crossing several points of view, in order to understand the phenomenon at hand. Chapter 4 presents different categories of simulation model in line with complexity sciences. These models rely notably on the concepts of emergence and self-organization and allow us to highlight the roles of interaction within change. Chapter 5 provides ideas on research concerning the various construction approaches of hybrid objects and model couplings.

Nonlinear System Identification

NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains

Author: S. A. Billings

Publisher: John Wiley & Sons

ISBN: 1119943590

Category: Technology & Engineering

Page: 555

View: 4692

This book helps practitioners and researchers find ways to solve difficult nonlinear system identification problems using the well-established NARMAX method. It is a description of a class of system identification algorithms that can be used to identify nonlinear dynamic models from recorded data. Written with an emphasis on making algorithms and methods accessible so that they can be applied and used in practice, this book also addresses frequency and spatio-temporal methods rarely covered elsewhere, and which can provide significant insights into complex system behaviours.

Advances in Spatio-Temporal Analysis

Author: Xinming Tang,Yaolin Liu,Jixian Zhang,Wolfgang Kainz

Publisher: CRC Press

ISBN: 0203937554

Category: Science

Page: 239

View: 6353

Developments in Geographic Information Technology have raised the expectations of users. A static map is no longer enough; there is now demand for a dynamic representation. Time is of great importance when operating on real world geographical phenomena, especially when these are dynamic. Researchers in the field of Temporal Geographical Information Systems (TGIS) have been developing methods of incorporating time into geographical information systems. Spatio-temporal analysis embodies spatial modelling, spatio-temporal modelling and spatial reasoning and data mining. Advances in Spatio-Temporal Analysis contributes to the field of spatio-temporal analysis, presenting innovative ideas and examples that reflect current progress and achievements.


Proceedings in Computational Statistics

Author: Paula Brito

Publisher: Springer Science & Business Media

ISBN: 3790820849

Category: Mathematics

Page: 573

View: 4224

18th Symposium Held in Porto, Portugal, 2008


Optical Science and Engineering for the 21st Century

Author: Xun Shen,Roel van Wijk

Publisher: Springer Science & Business Media

ISBN: 9780387249957

Category: Science

Page: 222

View: 3493

It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book. To promote the dialog and mutual penetration between biophoton research and photon technology is one of the important goals for the International Conference on Biophotons & Biophotonics 2003, and is developed and presented in Biophotonics: Optical Science and Engineering in the 21st Century.

Knowledge Discovery from Sensor Data

Author: Auroop R. Ganguly,Joao Gama,Olufemi A. Omitaomu,Mohamed Gaber,Ranga Raju Vatsavai

Publisher: CRC Press

ISBN: 9781420082333

Category: Computers

Page: 215

View: 2156

As sensors become ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including disaster preparedness and management, adaptability to climate change, national or homeland security, and the management of critical infrastructures. This book presents innovative solutions in offline data mining and real-time analysis of sensor or geographically distributed data. It discusses the challenges and requirements for sensor data based knowledge discovery solutions in high-priority application illustrated with case studies. It explores the fusion between heterogeneous data streams from multiple sensor types and applications in science, engineering, and security.

Handbook of Spatial Statistics

Author: Alan E. Gelfand,Peter Diggle,Peter Guttorp,Montserrat Fuentes

Publisher: CRC Press

ISBN: 9781420072884

Category: Mathematics

Page: 619

View: 8830

Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters. The handbook begins with a historical introduction detailing the evolution of the field. It then focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and spatial point patterns. The book also contains a section on space–time work as well as a section on important topics that build upon earlier chapters. By collecting the major work in the field in one source, along with including an extensive bibliography, this handbook will assist future research efforts. It deftly balances theory and application, strongly emphasizes modeling, and introduces many real data analysis examples.

Spatial and Temporal Reasoning in Geographic Information Systems

Author: Departments of Surveying Engineering and Computer Science Max J Egenhofer,Max J. Egenhofer,Reginald G. Golledge

Publisher: Oxford University Press on Demand

ISBN: 9780195103427

Category: Science

Page: 276

View: 9610

In an effort to further investigation into critical development facets of geographic information systems (GIS), this book explores the reasoning processes that apply to geographic space and time. As a result of an iniative sponsored by the National Center for Geographic Information and Analysis (NCGIA), it treats the computational, cognitive and social science applications aspects of spatial and temporal reasoning in GIS. Essays were contributed by scholars from a broad spectrum of disciplines including: geography, cartography, surveying and engineering, computer science, mathematics and environmental and cognitive psychology.