Introduction to Modern Set Theory

Author: Judith Roitman

Publisher: John Wiley & Sons

ISBN: 9780471635192

Category: Mathematics

Page: 156

View: 4243

This is modern set theory from the ground up--from partial orderings and well-ordered sets to models, infinite cobinatorics and large cardinals. The approach is unique, providing rigorous treatment of basic set-theoretic methods, while integrating advanced material such as independence results, throughout. The presentation incorporates much interesting historical material and no background in mathematical logic is assumed. Treatment is self-contained, featuring theorem proofs supported by diagrams, examples and exercises. Includes applications of set theory to other branches of mathematics.

Handbook of Analysis and Its Foundations

Author: Eric Schechter

Publisher: Academic Press

ISBN: 9780080532998

Category: Mathematics

Page: 883

View: 1869

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/

Proofs and Fundamentals

A First Course in Abstract Mathematics

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

ISBN: 9781441971272

Category: Mathematics

Page: 358

View: 371

“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.

An Introduction to Mathematical Analysis

International Series of Monographs on Pure and Applied Mathematics

Author: Robert A. Rankin

Publisher: Elsevier

ISBN: 1483137309

Category: Mathematics

Page: 624

View: 1665

An Introduction to Mathematical Analysis is an introductory text to mathematical analysis, with emphasis on functions of a single real variable. Topics covered include limits and continuity, differentiability, integration, and convergence of infinite series, along with double series and infinite products. This book is comprised of seven chapters and begins with an overview of fundamental ideas and assumptions relating to the field operations and the ordering of the real numbers, together with mathematical induction and upper and lower bounds of sets of real numbers. The following chapters deal with limits of real functions; differentiability and maxima, minima, and convexity; elementary properties of infinite series; and functions defined by power series. Integration is also considered, paying particular attention to the indefinite integral; interval functions and functions of bounded variation; the Riemann-Stieltjes integral; the Riemann integral; and area and curves. The final chapter is devoted to convergence and uniformity. This monograph is intended for mathematics students.

Measure Theory

Author: Donald L. Cohn

Publisher: Springer Science & Business Media

ISBN: 1489903992

Category: Mathematics

Page: 373

View: 2218

Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. Measure Theory provides a solid background for study in both harmonic analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are courses in topology and analysis.

ABPR

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 7624


A Systemic Perspective on Cognition and Mathematics

Author: Jeffrey Yi-Lin Forrest

Publisher: CRC Press

ISBN: 020348732X

Category: Computers

Page: 412

View: 1273

This book is devoted to the study of human thought, its systemic structure, and the historical development of mathematics both as a product of thought and as a fascinating case analysis. After demonstrating that systems research constitutes the second dimension of modern science, the monograph discusses the yoyo model, a recent ground-breaking development of systems research, which has brought forward revolutionary applications of systems research in various areas of the traditional disciplines, the first dimension of science. After the systemic structure of thought is factually revealed, mathematics, as a product of thought, is analyzed by using the age-old concepts of actual and potential infinities. In an attempt to rebuild the system of mathematics, this volume first provides a new look at some of the most important paradoxes, which have played a crucial role in the development of mathematics, in proving what these paradoxes really entail. Attention is then turned to constructing the logical foundation of two different systems of mathematics, one assuming that actual infinity is different than potential infinity, and the other that these infinities are the same. This volume will be of interest to academic researchers, students and professionals in the areas of systems science, mathematics, philosophy of mathematics, and philosophy of science.

Gastrointestinaltrakt

Diagnostik mit bildgebenden Verfahren

Author: Hatto-Franz Fuchs,Martin W. Donner

Publisher: Springer-Verlag

ISBN: 3642867979

Category: Medical

Page: 547

View: 9735

In diesem Band werden alle Teile des Gastrointestinaltraktes durch international anerkannte Spezialisten behandelt und alle modernen bildgebenden Verfahren erfaßt. Neben dem Schwerpunkt der konventionellen Röntgendiagnostik werden die neuen bildgebenden Verfahren wie Ultraschall, Computer- und Kernspintomographie einbezogen. Besonderer Wert wurde auf das Doppelkontrastverfahren des gesamten Gastrointestinaltraktes gelegt. Auch die Belange der modernen Endoskopie, sowie Besonderheiten im Kindesalter werden gewertet. Das hervorragende Bildmaterial erleichtert die Nutzung der Informationen für die tägliche Arbeit der Internisten und Radiologen der Fachgebiete.

Fermats letzter Satz

die abenteuerliche Geschichte eines mathematischen Rätsels

Author: Simon Singh

Publisher: N.A

ISBN: 9783423330527

Category: Fermat's last theorem

Page: 364

View: 8657