*An Introduction*

Author: Samuel Goldberg

Publisher: Courier Corporation

ISBN: 0486318540

Category: Mathematics

Page: 352

View: 3096

Skip to content
# Nothing Found

### Probability

Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.

### Probability

Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities.

### Probability: An Introduction

Probability: An Introduction provides the fundamentals, requiring minimal algebraic skills from the student. It begins with an introduction to sets and set operations, progresses to counting techniques, and then presents probability in an axiomatic way, never losing sight of elucidating the subject through concrete examples. The book contains numerous examples and solved exercises taken from various fields, and includes computer explorations using Maple.

### Probability

Praise for the First Edition "This is a well-written and impressively presented introduction to probability and statistics. The text throughout is highly readable, and the author makes liberal use of graphs and diagrams to clarify the theory." - The Statistician Thoroughly updated, Probability: An Introduction with Statistical Applications, Second Edition features a comprehensive exploration of statistical data analysis as an application of probability. The new edition provides an introduction to statistics with accessible coverage of reliability, acceptance sampling, confidence intervals, hypothesis testing, and simple linear regression. Encouraging readers to develop a deeper intuitive understanding of probability, the author presents illustrative geometrical presentations and arguments without the need for rigorous mathematical proofs. The Second Edition features interesting and practical examples from a variety of engineering and scientific fields, as well as: Over 880 problems at varying degrees of difficulty allowing readers to take on more challenging problems as their skill levels increase Chapter-by-chapter projects that aid in the visualization of probability distributions New coverage of statistical quality control and quality production An appendix dedicated to the use of Mathematica® and a companion website containing the referenced data sets Featuring a practical and real-world approach, this textbook is ideal for a first course in probability for students majoring in statistics, engineering, business, psychology, operations research, and mathematics. Probability: An Introduction with Statistical Applications, Second Edition is also an excellent reference for researchers and professionals in any discipline who need to make decisions based on data as well as readers interested in learning how to accomplish effective decision making from data.

### High-Dimensional Probability

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

### Introduction to Probability

Featured topics include permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, much more. Exercises with some solutions. Summary. 1973 edition.

### Numerical Probability

This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance. Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well as optimal quantization methods. The author further presents detailed applications to numerical aspects of pricing and hedging of financial derivatives, risk measures (such as value-at-risk and conditional value-at-risk), implicitation of parameters, and calibration. Aimed at graduate students and advanced undergraduate students, this book contains useful examples and over 150 exercises, making it suitable for self-study.

### Probability , An Introduction with Statistical Applications

Facts101 is your complete guide to Probability , An Introduction with Statistical Applications. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

### Probability

### Choice and Chance

This definitive survey of the hottest issues in inductive logic sets the stage for further classroom discussion.

### Introduction to Probability

This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH

### Probability Theory

This clear exposition begins with basic concepts and moves on to combination of events, dependent events and random variables, Bernoulli trials and the De Moivre-Laplace theorem, and more. Includes 150 problems, many with answers.

### Probability: A Lively Introduction

Comprehensive, yet concise, this textbook is the go-to guide to learn why probability is so important and its applications.

### An Introduction to Probability and Statistics

A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.

### Introduction to Probability

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

### An Introduction to Probability and Stochastic Processes

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

### Probability and Random Processes

This textbook provides a wide-ranging and entertaining indroduction to probability and random processes and many of their practical applications. It includes many exercises and problems with solutions.

### An Elementary Introduction to the Theory of Probability

This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.

### Knowing the Odds

John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. --Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, ``To teach a course with pleasure, one should learn at the same time.'' Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. --Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. --Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text.

### Probability: A Very Short Introduction

Making good decisions under conditions of uncertainty - which is the norm - requires a sound appreciation of the way random chance works. As analysis and modelling of most aspects of the world, and all measurement, are necessarily imprecise and involve uncertainties of varying degrees, the understanding and management of probabilities is central to much work in the sciences and economics. In this Very Short Introduction, John Haigh introduces the ideas of probability and different philosophical approaches to probability, and gives a brief account of the history of development of probability theory, from Galileo and Pascal to Bayes, Laplace, Poisson, and Markov. He describes the basic probability distributions, and goes on to discuss a wide range of applications in science, economics, and a variety of other contexts such as games and betting. He concludes with an intriguing discussion of coincidences and some curious paradoxes. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Full PDF eBook Download Free

*An Introduction*

Author: Samuel Goldberg

Publisher: Courier Corporation

ISBN: 0486318540

Category: Mathematics

Page: 352

View: 3096

*An Introduction*

Author: Geoffrey Grimmett,Dominic Welsh

Publisher: OUP Oxford

ISBN: 0191019933

Category: Mathematics

Page: 288

View: 6642

*An Introduction*

Author: David A. Santos

Publisher: Jones & Bartlett Publishers

ISBN: 1449666132

Category: Mathematics

Page: 406

View: 8213

*An Introduction with Statistical Applications*

Author: John J. Kinney

Publisher: John Wiley & Sons

ISBN: 111894710X

Category: Mathematics

Page: 480

View: 7033

*An Introduction with Applications in Data Science*

Author: Roman Vershynin

Publisher: Cambridge University Press

ISBN: 1108415199

Category: Business & Economics

Page: 296

View: 7187

Author: John E. Freund

Publisher: Courier Corporation

ISBN: 0486158438

Category: Mathematics

Page: 247

View: 9519

*An Introduction with Applications to Finance*

Author: Gilles Pagès

Publisher: Springer

ISBN: 3319902768

Category: Mathematics

Page: 579

View: 4566

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1497045215

Category: Education

Page: 40

View: 441

*an introduction with applications*

Author: Albert J. Simone

Publisher: N.A

ISBN: N.A

Category: Probabilities

Page: 163

View: 869

*An Introduction to Inductive Logic*

Author: Brian Skyrms

Publisher: Wadsworth Publishing Company

ISBN: 9780534557379

Category: Education

Page: 174

View: 2099

Author: Charles Miller Grinstead,James Laurie Snell

Publisher: American Mathematical Soc.

ISBN: 0821894145

Category: Probabilities

Page: 510

View: 5751

*A Concise Course*

Author: Y. A. Rozanov

Publisher: Courier Corporation

ISBN: 0486321142

Category: Mathematics

Page: 148

View: 8068

Author: Henk Tijms

Publisher: Cambridge University Press

ISBN: 1108418740

Category: Mathematics

Page: N.A

View: 8279

Author: Vijay K. Rohatgi,A.K. Md. Ehsanes Saleh

Publisher: John Wiley & Sons

ISBN: 1118799658

Category: Mathematics

Page: 728

View: 8149

Author: Joseph K. Blitzstein,Jessica Hwang

Publisher: CRC Press

ISBN: 1498759769

Category: Mathematics

Page: 596

View: 9910

Author: James L. Melsa,Andrew P. Sage

Publisher: Courier Corporation

ISBN: 0486490998

Category: Mathematics

Page: 403

View: 5187

Author: Geoffrey Grimmett,David Stirzaker

Publisher: Oxford University Press

ISBN: 9780198572220

Category: Mathematics

Page: 596

View: 3497

Author: Boris Vladimirovich Gnedenko,Aleksandr I?Akovlevich Khinchin

Publisher: Courier Corporation

ISBN: 9780486601557

Category: Mathematics

Page: 130

View: 6400

*An Introduction to Probability*

Author: John B. Walsh

Publisher: American Mathematical Soc.

ISBN: 0821885324

Category: Mathematics

Page: 421

View: 6815

Author: John Haigh

Publisher: OUP Oxford

ISBN: 0191636835

Category: Mathematics

Page: 144

View: 6522