Principal Bundles

The Classical Case

Author: Stephen Bruce Sontz

Publisher: Springer

ISBN: 331914765X

Category: Science

Page: 280

View: 9680

This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 3918

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 8206

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 5271

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Surfaces in Classical Geometries

A Treatment by Moving Frames

Author: Gary R. Jensen,Emilio Musso,Lorenzo Nicolodi

Publisher: Springer

ISBN: 3319270761

Category: Mathematics

Page: 571

View: 2838

Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, MatlabTM, and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress. The book pursues significant results beyond the standard topics of an introductory differential geometry course. A sample of these results includes the Willmore functional, the classification of cyclides of Dupin, the Bonnet problem, constant mean curvature immersions, isothermic immersions, and the duality between minimal surfaces in Euclidean space and constant mean curvature surfaces in hyperbolic space. The book concludes with Lie sphere geometry and its spectacular result that all cyclides of Dupin are Lie sphere equivalent. The exposition is restricted to curves and surfaces in order to emphasize the geometric interpretation of invariants and other constructions. Working in low dimensions helps students develop a strong geometric intuition. Aspiring geometers will acquire a working knowledge of curves and surfaces in classical geometries. Students will learn the invariants of conformal geometry and how these relate to the invariants of Euclidean, spherical, and hyperbolic geometry. They will learn the fundamentals of Lie sphere geometry, which require the notion of Legendre immersions of a contact structure. Prerequisites include a completed one semester standard course on manifold theory.

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 6544

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 8435

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 3658022620

Category: Mathematics

Page: 214

View: 4020

Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

Geometrische Methoden in der Invariantentheorie

Author: Hanspeter Kraft

Publisher: Springer-Verlag

ISBN: 3663101436

Category: Technology & Engineering

Page: 308

View: 8415

In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.

Die Gruppentheoretische Methode in der Quantenmechanik

Author: Bartel Leendert van der Waerden

Publisher: Springer-Verlag

ISBN: 3662021870

Category: Mathematics

Page: 160

View: 637

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie

Author: Paulo Ribenboim

Publisher: Springer-Verlag

ISBN: 3540879579

Category: Mathematics

Page: 391

View: 2569

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.