P-adic Analysis Compared with Real

Author: Svetlana Katok

Publisher: American Mathematical Soc.

ISBN: 082184220X

Category: Mathematics

Page: 152

View: 6487

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. In addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.

P-adic Analysis Compared with Real

Author: Svetlana Katok

Publisher: American Mathematical Soc.

ISBN: 9780821884591

Category: Mathematics

Page: 152

View: 2433

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. in addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.

A Course in p-adic Analysis

Author: Alain M. Robert

Publisher: Springer Science & Business Media

ISBN: 1475732546

Category: Mathematics

Page: 438

View: 6020

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.

Ultrametric Calculus

An Introduction to P-Adic Analysis

Author: W. H. Schikhof

Publisher: Cambridge University Press

ISBN: 0521032873

Category: Mathematics

Page: 320

View: 4614

This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.

Geometries

Author: Alekseĭ Bronislavovich Sosinskiĭ

Publisher: American Mathematical Soc.

ISBN: 082187571X

Category: Mathematics

Page: 301

View: 7823

The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Quantum Calculus

Author: Victor Kac,Pokman Cheung

Publisher: Springer Science & Business Media

ISBN: 1461300711

Category: Mathematics

Page: 112

View: 9716

Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.

Lectures on the Hyperreals

An Introduction to Nonstandard Analysis

Author: Robert Goldblatt

Publisher: Springer Science & Business Media

ISBN: 1461206154

Category: Mathematics

Page: 293

View: 4831

An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Author: Neal Koblitz

Publisher: Springer Science & Business Media

ISBN: 1461211123

Category: Mathematics

Page: 153

View: 8502

The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.

p-adic Numbers

An Introduction

Author: Fernando Q. Gouvea

Publisher: Springer Science & Business Media

ISBN: 3662222787

Category: Mathematics

Page: 282

View: 8561

p-adic numbers are of great theoretical importance in number theory, since they allow the use of the language of analysis to study problems relating toprime numbers and diophantine equations. Further, they offer a realm where one can do things that are very similar to classical analysis, but with results that are quite unusual. The book should be of use to students interested in number theory, but at the same time offers an interesting example of the many connections between different parts of mathematics. The book strives to be understandable to an undergraduate audience. Very little background has been assumed, and the presentation is leisurely. There are many problems, which should help readers who are working on their own (a large appendix with hints on the problem is included). Most of all, the book should offer undergraduates exposure to some interesting mathematics which is off the beaten track. Those who will later specialize in number theory, algebraic geometry, and related subjects will benefit more directly, but all mathematics students can enjoy the book.

Introduction to $P$-Adic Analytic Number Theory

Author: M. Ram Murty

Publisher: American Mathematical Soc.

ISBN: 0821847740

Category: Number theory

Page: 149

View: 1455

This book is an elementary introduction to $p$-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory.

Invitation to the Mathematics of Fermat-Wiles

Author: Yves Hellegouarch

Publisher: Elsevier

ISBN: 9780080478777

Category: Mathematics

Page: 400

View: 8297

Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem

An Introduction to Combinatorial Analysis

Author: John Riordan

Publisher: Princeton University Press

ISBN: 1400854334

Category: Mathematics

Page: 258

View: 8597

This book introduces combinatorial analysis to the beginning student. The author begins with the theory of permutation and combinations and their applications to generating functions. In subsequent chapters, he presents Bell polynomials; the principle of inclusion and exclusion; the enumeration of permutations in cyclic representation; the theory of distributions; partitions, compositions, trees and linear graphs; and the enumeration of restricted permutations. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

P-adic Analysis

A Short Course on Recent Work

Author: Neal Koblitz

Publisher: Cambridge University Press

ISBN: 9780521280600

Category: Mathematics

Page: 163

View: 9226

An introduction to recent work in the theory of numbers and its interrelation with algebraic geometry and analysis.

Model Theory, Algebra, and Geometry

Author: Deirdre Haskell,Anand Pillay,Charles Steinhorn

Publisher: Cambridge University Press

ISBN: 9780521780681

Category: Mathematics

Page: 227

View: 8772

Leading experts survey the connections between model theory and semialgebraic, subanalytic, p-adic, rigid and diophantine geometry.

Real Mathematical Analysis

Author: Charles C. Pugh

Publisher: Springer Science & Business Media

ISBN: 9780387952970

Category: Mathematics

Page: 440

View: 6588

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Mathematics

A Minimal Introduction

Author: Alexandru Buium

Publisher: CRC Press

ISBN: 1482216019

Category: Mathematics

Page: 208

View: 2264

Bridging the gap between procedural mathematics that emphasizes calculations and conceptual mathematics that focuses on ideas, Mathematics: A Minimal Introduction presents an undergraduate-level introduction to pure mathematics and basic concepts of logic. The author builds logic and mathematics from scratch using essentially no background except natural language. He also carefully avoids circularities that are often encountered in related books and places special emphasis on separating the language of mathematics from metalanguage and eliminating semantics from set theory. The first part of the text focuses on pre-mathematical logic, including syntax, semantics, and inference. The author develops these topics entirely outside the mathematical paradigm. In the second part, the discussion of mathematics starts with axiomatic set theory and ends with advanced topics, such as the geometry of cubics, real and p-adic analysis, and the quadratic reciprocity law. The final part covers mathematical logic and offers a brief introduction to model theory and incompleteness. Taking a formalist approach to the subject, this text shows students how to reconstruct mathematics from language itself. It helps them understand the mathematical discourse needed to advance in the field.

p-adic Differential Equations

Author: Kiran S. Kedlaya

Publisher: Cambridge University Press

ISBN: 1139489208

Category: Mathematics

Page: N.A

View: 486

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.