Organic Superconductors

Author: Takehiko Ishiguro,Kunihiko Yamaji,Gunzi Saito

Publisher: Springer Science & Business Media

ISBN: 3642582621

Category: Technology & Engineering

Page: 522

View: 3210

Organic Superconductors is an introduction to organic conductors and superconductors and a review of the current status of the field. First, organic conductors are described, then the structures and electronic properties of organic superconductors are discussed, illustrated with examples of typical compounds. The book deals in detail with theories of the mechanism of superconductivity, and more briefly with spin-density waves. The design, principle, and synthesis of organic superconductors are also described. This second edition covers the research activities of the last few years.

Organic Superconductivity

Author: Vladimir Z. Kresin,William A. Little

Publisher: Springer Science & Business Media

ISBN: 1489926054

Category: Science

Page: 386

View: 5055

This book contains papers presented at the International Conference on Organic Superconductivity which was held May 20-24, 1990, at the Stanford Sierra Conference Center, South Lake Tahoe, California. In the twenty years since the First Conference on Organic Superconductivity was held (Hawaii, 1969), there has been remarkable progress in the field. At present, development is accelerating with contributions from many groups in many countries worldwide. The discovery of high Tc superconductivity by G. Bednorz and K. Muller in 1986 and subsequent developments in the ceramic superconductors have had an enormous impact on the field of superconductivity as a whole. This discovery occurred in an area entirely different from that of conventional superconduc tivity, underscoring the importance of the search for and study of novel materials of all kinds. We believe that the organics, with their wide range of structural, chemical, and physical properties, belong in this category of novel materials. This book reflects the efforts of researchers from various disciplines: physicists, chemists, and materials scientists. It addresses the normal and superconducting properties of organic materials, as well as the search for new compounds and new syntheses. We are pleased to note that one of these papers reports on the discovery of a new organic superconductor with a record high Tc in this class. One chapter is devoted to a comparison of organic superconductors and the cuprates, another, to the prospects of discovering other novel conducting or superconducting compounds.

Solid State Physics

Proceedings of the D. A. E. Solid State Physics Symposium

Author: R. Mukhopadhyay

Publisher: Universities Press

ISBN: 9788173711985


Page: 548

View: 1365

One-Dimensional Metals

Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene

Author: Siegmar Roth,David Carroll

Publisher: John Wiley & Sons

ISBN: 3527335579

Category: Science

Page: 360

View: 8350

Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials. In this completely revised and expanded third edition the authors also cover graphene as one of the most important research topics in the field of low dimensional materials for electronic applications. In addition, the topics of nanotubes and nanoribbons are widely enlarged to reflect the research advances of the last years.

Site Symmetry in Crystals

Theory and Applications

Author: Robert Evarestov,Vyacheslav P. Smirnov

Publisher: Springer Science & Business Media

ISBN: 3642974422

Category: Science

Page: 274

View: 8725

The history of applications of space group theory to solid state physics goes back more than five decades. The periodicity of the lattice and the definition of a k-space were the corner-stones of this application. Prof. Volker Heine in Vol. 35 of Solid State Physics (1980) noted that, even in perfect crystals, where k-space methods are appropriate, the local properties (such as the charge densi ty, bond order, etc.) are defined by the local environment of one atom. Natural ly, "k-space methods" are not appropriate for crystals with point defects, sur faces and interfaces, or for amorphous materials. In such cases the real-space approach favored by chemists to describe molecules has turned out to be very useful. To span the gulf between the k-space and real space methods it is helpful to recall that atoms in crystalline solids possess a site symmetry defined by the symmetry of the local environment of the atom occupying the site. The site symmetry concept is familiar to crystallographers and commonly used by them in the description of crystalline structures. However, in the application of group theory to solid state physics problems, the site symmetry approach has been used only for the last ten to fifteen years. In our book Methods oj Group Theory in the Quantum Chemistry oj Solids published in Russian in 1987 by Leningrad University Press we gave the first results of this application to the theory of electronic structure of crystals.

The Physics of Organic Superconductors and Conductors

Author: Andrei Lebed

Publisher: Springer Science & Business Media

ISBN: 9783540766728

Category: Technology & Engineering

Page: 754

View: 8035

This bang up-to-date volume contains the distilled wisdom of some of the world’s leading minds on the subject. Inside, there is a treasure trove of general (tutorial) and topical reviews, written by leading researchers in the area of organic superconductors and conductors. The papers hail from all over the world, as far afield as the USA and Australia. They cover contemporary topics such as unconventional superconductivity, non-Fermi-liquid properties, and the quantum Hall effect.

One-Dimensional Conductors

Author: Seiichi Kagoshima,Hiroshi Nagasawa,Takashi Sambongi

Publisher: Springer Science & Business Media

ISBN: 3642831796

Category: Technology & Engineering

Page: 235

View: 7556

This volume deals with physical properties of electrically one-dimensional conductors. It includes both a description of basic concepts and a review of recent progress in research. One-dimensional conductors are those materials in which an electric current flows easily in one specific crystal direction while the resistivity is very high in transverse directions. It was about 1973 when much attention began to be focussed on them and investigations started in earnest. The research was stimulated by the successful growth of crystals of the organic conductor TTF-TCNQ and of the inorganic conductor KCP. New concepts, characteristic of one dimension, were established in the in vestigations of their properties. Many new one-dimensional conductors were also found and synthesized. This field of research is attractive because of the discovery of new ma terials, phenomena and concepts which have only recently found a place in the framework of traditional solid-state physics and materials science. The relation of this topic to the wider field of solid-state sciences is therefore still uncertain. This situation is clearly reflected in the wide distribution of the fields of specialization of researchers. Due to this, and also to the rapid progress of research, no introductory book has been available which covers most of the important fields of research on one-dimensional conductors.

The Role of Topology in Materials

Author: Sanju Gupta,Avadh Saxena

Publisher: Springer

ISBN: 3319765965

Category: Science

Page: 297

View: 6249

This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure–property–function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.

Introduction to Frustrated Magnetism

Materials, Experiments, Theory

Author: Claudine Lacroix,Philippe Mendels,Frédéric Mila

Publisher: Springer Science & Business Media

ISBN: 9783642105890

Category: Science

Page: 682

View: 4188

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.

Handbook of High -Temperature Superconductivity

Theory and Experiment

Author: J. Robert Schrieffer

Publisher: Springer Science & Business Media

ISBN: 0387687343

Category: Technology & Engineering

Page: 627

View: 7291

Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.

High-Tc Copper Oxide Superconductors and Related Novel Materials

Dedicated to Prof. K. A. Müller on the Occasion of His 90th Birthday

Author: Annette Bussmann-Holder,Hugo Keller,Antonio Bianconi

Publisher: Springer

ISBN: 3319526758

Category: Technology & Engineering

Page: 322

View: 4896

Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Müller's ground-breaking research on SrTiO3.

Fullerene Polymers and Fullerene Polymer Composites

Author: Peter C. Eklund,Apparao Rao

Publisher: Springer Science & Business Media

ISBN: 366204269X

Category: Technology & Engineering

Page: 395

View: 5477

This in-depth experimental and theoretical account explores polymers and composites whose unusual properties (such as photophysical phenomena, electrical transport, phase transitions, and magnetic properties) stem from the incorporation of C60 in the material. Introductory chapters on the fundamental properties of fullerenes (C60, C70) and photophysical phenomena in fullerenes and polymers are also included.

Advances in Superconductivity

Author: J. Deaver,B.S. Deaver,J. Ruvalds

Publisher: Springer Science & Business Media

ISBN: 1461399548

Category: Technology & Engineering

Page: 529

View: 9271

The Advanced Study Institute on "Advances in Superconductivity" was held at the Ettore Majorana Centre for Scientific Culture in Erice, Sicily, during July 3 to July 15, 1982. This Institute was the third course of the International School of Low Tempera ture Physics, which was established at the Centre in 1977 with the guidance and inspiration of T. Regge and A. Zichichi. The 1982 Course was centered on a topic which brought together fundamental basic research and the most recent promising technological applications. Accordingly, the participants represented a wide spectrum of industrial and government laboratories, as well as universities from various countries. The program of topics and speakers was developed with the advice of the Organizing Committee, composed of H. Frohlich, T. Regge, B. Stritzker, and L. Testardi. This Institute emphasized recent developments in the science and technology of superconductivity. A historical perspective was provided by H. Frohlich, whose lectures recall the earliest discoveries and theoretical attempts to understand superconductivity. Ironically, his early suggestion of the electron-phonon coupling as a key to superconductivity was met with initial widespread skepticism. Later, the development of field theory methods for solid state physics problems, and the evolution of the BCS theory has led to a seemingly unanimous concensus regarding the e1ectron phonon mechanism as the predominant source of superconductivity in known materials. Experimental studies of superconductivity exemplify the strong interplay of science and technology in many ways.

Physical Properties of Quasicrystals

Author: Zbigniew M. Stadnik

Publisher: Springer Science & Business Media

ISBN: 3642584349

Category: Science

Page: 443

View: 1653

Quasicrystals are a new form of the solid state which differ from the other two known forms, crystalline and amorphous, by possesing a new type of long-range translational order, called quasiperiodicty, and a noncrystallographic orientational order. This book provides an up-to-date description of the unusual physical properties of these new materials. Emphasis is placed on the experimental results, which are compared with those of the corresponding crystalline and amorphous systems and discussed in terms of modern theoretical models. Written by leading authorities in the field, the book will be of great use both to experienced workers in the field and to uninitiated graduate students.

Growth and Characterization of Bulk Superconductor Material

Author: Dapeng Chen,Chengtian Lin,Andrey Maljuk,Fang Zhou

Publisher: Springer

ISBN: 331931548X

Category: Technology & Engineering

Page: 196

View: 7117

This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and superconducting properties of these compounds in a comparative study of different growth methods. It describes particularly under-, optimal and over-doped with oxygen cuprates (LCO, YBCO and BSCCO) and hole/electron/isovalently doped parent compounds AFe2As2 (A = Ba, Sr, Ca) (122), chalcogenides AxFe2-ySe2(A = K, Rb, Cs) (122), and Fe1-dTe1-xSex (11). A review of the current growth technologies and future growth efforts handling volatile and poisonous components are also presented.


fundamentals and applications

Author: Werner Buckel,Reinhold Kleiner

Publisher: John Wiley and Sons

ISBN: 9783527403493

Category: Science

Page: 461

View: 6568

A comprehensive introduction in the theory and modern applications of superconductivity. (Midwest).

Solid State Science, Past, Present and Predicted

Author: D. L. Weaire,Colin G. Windsor

Publisher: CRC Press


Category: Science

Page: 328

View: 886

An edited work covering topics from the prehistory of solid state physics, diffraction and electrons at the Fermi surface, superconductivity, solid state optics and microelectronics. It traces the history and achievements of the science of the solid state. It provides a balanced overview of the subject accessible in part or in whole to a wide readership. Of interest to professional physicists, engineers and scientists in condensed matter physics and the related areas of metallurgy, solid state physics and chemistry, electronics and materials science and historians of science.

Handbook of Organic Conductive Molecules and Polymers, Charge-Transfer Salts, Fullerenes and Photoconductors

Author: Hari Singh Nalwa

Publisher: Wiley

ISBN: 9780471965930

Category: Technology & Engineering

Page: 828

View: 1421

Conductive polymers--polymers that conduct electricity--have applications in telecommunications, electronics, materials science, chemistry and physics. The four self-contained volumes of this handbook thoroughly explore all aspects of conductive polymers including chemical and physical properties, technology and applications.