*Finite Difference Methods*

Author: Gordon D. Smith

Publisher: Oxford University Press

ISBN: 9780198596509

Category: Mathematics

Page: 337

View: 2412

Skip to content
# Nothing Found

### Numerical Solution of Partial Differential Equations

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

### Numerical Solution of Partial Differential Equations

This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

### Numerical Solution of Partial Differential Equations by the Finite Element Method

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

### Numerical Solution of Partial Differential Equations in Science and Engineering

From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

### The Numerical Solution of Ordinary and Partial Differential Equations

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

### Numerical Solution of Partial Differential Equations on Parallel Computers

Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.

### Numerical Solution of Elliptic and Parabolic Partial Differential Equations with CD-ROM

Theory, methods and software for elliptic (steady-state) and parabolic (diffusion) partial differential equations, plus linear algebra and error estimators.

### Numerical Solutions of Partial Differential Equations

This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

### Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per

### Numerical Solution of Partial Differential Equations

This book is the result of two courses of lectures given at the University of Cologne in Germany in 1974/75. The majority of the students were not familiar with partial differential equations and functional analysis. This explains why Sections 1, 2, 4 and 12 contain some basic material and results from these areas. The three parts of the book are largely independent of each other and can be read separately. Their topics are: initial value problems, boundary value problems, solutions of systems of equations. There is much emphasis on theoretical considerations and they are discussed as thoroughly as the algorithms which are presented in full detail and together with the programs. We believe that theoretical and practical applications are equally important for a genuine understa- ing of numerical mathematics. When writing this book, we had considerable help and many discussions with H. W. Branca, R. Esser, W. Hackbusch and H. Multhei. H. Lehmann, B. Muller, H. J. Niemeyer, U. Schulte and B. Thomas helped with the completion of the programs and with several numerical calculations. Springer-Verlag showed a lot of patience and under standing during the course of the production of the book. We would like to use the occasion of this preface to express our thanks to all those who assisted in our sometimes arduous task.

### Numerical Solutions for Partial Differential Equations

Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.

### Group Explicit Methods for the Numerical Solution of Partial Differential Equations

A new class of methods, termed "group explicit methods," is introduced in this text. Their applications to solve parabolic, hyperbolic and elliptic equations are outlined, and the advantages for their implementation on parallel computers clearly portrayed. Also included are the introductory and fundamental concepts from which the new methods are derived, and on which they are dependent. With the increasing advent of parallel computing into all aspects of computational mathematics, there is no doubt that the new methods will be widely used.

### Numerical Solution of Hyperbolic Partial Differential Equations

For mathematicians and engineers interested in applying numerical methods to physical problems this book is ideal. Numerical ideas are connected to accompanying software, which is also available online. By seeing the complete description of the methods in both theory and implementation, students will more easily gain the knowledge needed to write their own application programs or develop new theory. The book contains careful development of the mathematical tools needed for analysis of the numerical methods, including elliptic regularity theory and approximation theory. Variational crimes, due to quadrature, coordinate mappings, domain approximation and boundary conditions, are analyzed. The claims are stated with full statement of the assumptions and conclusions, and use subscripted constants which can be traced back to the origination (particularly in the electronic version, which can be found on the accompanying CD-ROM).

### Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.

### Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

### Partial Differential Equations with Numerical Methods

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

### Numerical Solution of Partial Differential Equations

Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Generally these models must be solved numerically. This book provides a concise introduction to standard numerical techniques, ones chosen on the basis of their general utility for practical problems. The authors emphasise finite difference methods for simple examples of parabolic, hyperbolic and elliptic equations; finite element, finite volume and spectral methods are discussed briefly to see how they relate to the main theme. Stability is treated clearly and rigorously using maximum principles, energy methods, and discrete Fourier analysis. Methods are described in detail for simple problems, accompanied by typical graphical results. A key feature is the thorough analysis of the properties of these methods. Plenty of examples and exercises of varying difficulty are supplied. The book is based on the extensive teaching experience of the authors, who are also well-known for their work on practical and theoretical aspects of numerical analysis. It will be an excellent choice for students and teachers in mathematics, engineering and computer science departments seeking a concise introduction to the subject.

### Numerical Solution of Ordinary and Partial Differential Equations

Numerical Solution of Ordinary and Partial Differential Equations is based on a summer school held in Oxford in August-September 1961. The book is organized into four parts. The first three cover the numerical solution of ordinary differential equations, integral equations, and partial differential equations of quasi-linear form. Most of the techniques are evaluated from the standpoints of accuracy, convergence, and stability (in the various senses of these terms) as well as ease of coding and convenience of machine computation. The last part, on practical problems, uses and develops the techniques for the treatment of problems of the greatest difficulty and complexity, which tax not only the best machines but also the best brains. This book was written for scientists who have problems to solve, and who want to know what methods exist, why and in what circumstances some are better than others, and how to adapt and develop techniques for new problems. The budding numerical analyst should also benefit from this book, and should find some topics for valuable research. The first three parts, in fact, could be used not only by practical men but also by students, though a preliminary elementary course would assist the reading.

### Numerical solution of partial differential equations

### Numerical Partial Differential Equations in Finance Explained

This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are givento illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation. The book concludes with a detailed discussion of the important step towards two-dimensional PDEs in finance.

Full PDF eBook Download Free

*Finite Difference Methods*

Author: Gordon D. Smith

Publisher: Oxford University Press

ISBN: 9780198596509

Category: Mathematics

Page: 337

View: 2412

*An Introduction*

Author: K. W. Morton,D. F. Mayers

Publisher: Cambridge University Press

ISBN: 1139443208

Category: Mathematics

Page: N.A

View: 2021

Author: Claes Johnson

Publisher: Courier Corporation

ISBN: 0486131599

Category: Mathematics

Page: 288

View: 9858

Author: Leon Lapidus,George F. Pinder

Publisher: John Wiley & Sons

ISBN: 1118031210

Category: Mathematics

Page: 677

View: 8567

Author: Granville Sewell

Publisher: World Scientific

ISBN: 9814635111

Category: Mathematics

Page: 348

View: 5813

Author: Are Magnus Bruaset,Aslak Tveito

Publisher: Springer Science & Business Media

ISBN: 3540316191

Category: Mathematics

Page: 482

View: 9417

Author: John A. Trangenstein

Publisher: Cambridge University Press

ISBN: 0521877261

Category: Mathematics

Page: 635

View: 8753

Author: Silvia Bertoluzza,Silvia Falletta,Giovanni Russo,Chi-Wang Shu

Publisher: Springer Science & Business Media

ISBN: 3764389400

Category: Mathematics

Page: 202

View: 2550

Author: Hans G. Kaper,Marc Garbey

Publisher: CRC Press

ISBN: 9780585319674

Category: Mathematics

Page: 286

View: 8938

Author: T. Meis,U. Marcowitz

Publisher: Springer Science & Business Media

ISBN: 1461258855

Category: Mathematics

Page: 556

View: 3617

*Problem Solving Using Mathematica*

Author: Victor Grigor'e Ganzha,Evgenii Vasilev Vorozhtsov

Publisher: CRC Press

ISBN: 9780849373794

Category: Mathematics

Page: 347

View: 3828

Author: David J. Evans

Publisher: CRC Press

ISBN: 9789056990190

Category: Mathematics

Page: 480

View: 3563

Author: John A. Trangenstein

Publisher: Cambridge University Press

ISBN: 052187727X

Category: Mathematics

Page: 597

View: 1520

Author: Tarek Mathew

Publisher: Springer Science & Business Media

ISBN: 354077209X

Category: Mathematics

Page: 770

View: 2549

Author: William F. Ames

Publisher: Academic Press

ISBN: 1483262421

Category: Mathematics

Page: 380

View: 9997

Author: Stig Larsson,Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3540887059

Category: Mathematics

Page: 262

View: 8865

Author: K. W. Morton,D. F. Mayers

Publisher: Cambridge University Press

ISBN: 9780521418553

Category: Mathematics

Page: 239

View: 8144

*Based on a Summer School Held in Oxford, August-September 1961*

Author: L. Fox

Publisher: Elsevier

ISBN: 1483149471

Category: Mathematics

Page: 520

View: 9063

*with exercises and worked solutions*

Author: Gordon D. Smith

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 179

View: 6356

*An Introduction to Computational Finance*

Author: Karel in 't Hout

Publisher: Springer

ISBN: 1137435690

Category: Business & Economics

Page: 128

View: 5979