Numerical Methods for Evolutionary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

ISBN: 0898718910

Category: Evolution equations

Page: 395

View: 6350

Methods for the numerical simulation of dynamic mathematical models have been the focus of intensive research for well over 60 years, and the demand for better and more efficient methods has grown as the range of applications has increased. Mathematical models involving evolutionary partial differential equations (PDEs) as well as ordinary differential equations (ODEs) arise in diverse applications such as fluid flow, image processing and computer vision, physics-based animation, mechanical systems, relativity, earth sciences, and mathematical finance. This textbook develops, analyzes, and applies numerical methods for evolutionary, or time-dependent, differential problems. Both PDEs and ODEs are discussed from a unified viewpoint. The author emphasizes finite difference and finite volume methods, specifically their principled derivation, stability, accuracy, efficient implementation, and practical performance in various fields of science and engineering. Smooth and nonsmooth solutions for hyperbolic PDEs, parabolic-type PDEs, and initial value ODEs are treated, and a practical introduction to geometric integration methods is included as well. Audience: suitable for researchers and graduate students from a variety of fields including computer science, applied mathematics, physics, earth and ocean sciences, and various engineering disciplines. Researchers who simulate processes that are modeled by evolutionary differential equations will find material on the principles underlying the appropriate method to use and the pitfalls that accompany each method.

Numerical Methods for Ordinary Differential Equations

Author: J. C. Butcher

Publisher: John Wiley & Sons

ISBN: 1119121507

Category: Mathematics

Page: 538

View: 7936

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. Key features: ?? Presents a comprehensive and detailed study of the subject ?? Covers both practical and theoretical aspects ?? Includes widely accessible topics along with sophisticated and advanced details ?? Offers a balance between traditional aspects and modern developments This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

ISBN: 3319137972

Category: Mathematics

Page: 393

View: 2264

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Advances in Numerical Analysis: Nonlinear partial differential equations and dynamical systems

Author: William Allan Light,Science and Engineering Research Council (Great Britain)

Publisher: Oxford University Press, USA

ISBN: 9780198534389

Category: Mathematics

Page: 288

View: 6677

The aim of this volume is to present research workers and graduate students in numerical analysis with a state-of-the-art survey of some of the most active areas of numerical analysis. This, and a companion volume, arise from a Summer School intended to cover recent trends in the subject. The chapters are written by the main lecturers at the School. Each is an internationally renowned expert in his respective field. This volume covers research in the numerical analysis of nonlinear phenomena: evolution equations, free boundary problems, spectral methods, and numerical methods for dynamical systems, nonlinear stability, and differential equations on manifolds.

Mathematical Analysis and Numerical Methods for Science and Technology

Volume 5 Evolution Problems I

Author: Robert Dautray,Jacques-Louis Lions

Publisher: Springer Science & Business Media

ISBN: 9783540661016

Category: Mathematics

Page: 739

View: 740

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.

Numerical Methods and Applications

7th International Conference, NMA 2010, Borovets, Bulgaria, August 20-24, 2010, Revised Papers

Author: Lirkov Ivan Dimov,Stefka Dimova,Natalia Kolkovska

Publisher: Springer

ISBN: 3642184669

Category: Computers

Page: 512

View: 4831

This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Numerical Methods and Applications, NMA 2010, held in Borovets, Bulgaria, in August 2010. The 60 revised full papers presented together with 3 invited papers were carefully reviewed and selected from numerous submissions for inclusion in this book. The papers are organized in topical sections on Monte Carlo and quasi-Monte Carlo methods, environmental modeling, grid computing and applications, metaheuristics for optimization problems, and modeling and simulation of electrochemical processes.

Essential Partial Differential Equations

Analytical and Computational Aspects

Author: David F. Griffiths,John W. Dold,David J. Silvester

Publisher: Springer

ISBN: 3319225693

Category: Mathematics

Page: 368

View: 6559

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

Numerical Methods for Ordinary Differential Systems

The Initial Value Problem

Author: J. D. Lambert

Publisher: Wiley-Blackwell

ISBN: 9780471929901

Category: Mathematics

Page: 293

View: 1087

Numerical Methods for Ordinary Differential Systems The Initial Value Problem J. D. Lambert Professor of Numerical Analysis University of Dundee Scotland In 1973 the author published a book entitled Computational Methods in Ordinary Differential Equations. Since then, there have been many new developments in this subject and the emphasis has changed substantially. This book reflects these changes; it is intended not as a revision of the earlier work but as a complete replacement for it. Although some basic material appears in both books, the treatment given here is generally different and there is very little overlap. In 1973 there were many methods competing for attention but more recently there has been increasing emphasis on just a few classes of methods for which sophisticated implementations now exist. This book places much more emphasis on such implementations—and on the important topic of stiffness—than did its predecessor. Also included are accounts of the structure of variable-step, variable-order methods, the Butcher and the Albrecht theories for Runge—Kutta methods, order stars and nonlinear stability theory. The author has taken a middle road between analytical rigour and a purely computational approach, key results being stated as theorems but proofs being provided only where they aid the reader’s understanding of the result. Numerous exercises, from the straightforward to the demanding, are included in the text. This book will appeal to advanced students and teachers of numerical analysis and to users of numerical methods who wish to understand how algorithms for ordinary differential systems work and, on occasion, fail to work.

Numerical Methods for Viscosity Solutions and Applications

Author: Maurizio Falcone,Charalampos Makridakis

Publisher: World Scientific

ISBN: 9789812799807

Category: Mathematics

Page: 248

View: 4810

The volume contains twelve papers dealing with the approximation of first and second order problems which arise in many fields of application including optimal control, image processing, geometrical optics and front propagation. Some contributions deal with new algorithms and technical issues related to their implementation. Other contributions are more theoretical, dealing with the convergence of approximation schemes. Many test problems have been examined to evaluate the performances of the algorithms. The volume can attract readers involved in the numerical approximation of differential models in the above-mentioned fields of applications, engineers, graduate students as well as researchers in numerical analysis. Contents: Geometrical Optics and Viscosity Solutions (A-P Blanc et al.); Computation of Vorticity Evolution for a Cylindrical Type-II Superconductor Subject to Parallel and Transverse Applied Magnetic Fields (A Briggs et al.); A Characterization of the Value Function for a Class of Degenerate Control Problems (F Camilli); Some Microstructures in Three Dimensions (M Chipot & V L(r)cuyer); Convergence of Numerical Schemes for the Approximation of Level Set Solutions to Mean Curvature Flow (K Deckelnick & G Dziuk); Optimal Discretization Steps in Semi-Lagrangian Approximation of First Order PDEs (M Falcone et al.); Convergence Past Singularities to the Forced Mean Curvature Flow for a Modified Reaction-Diffusion Approach (F Fierro); The Viscosity/Duality Solutions Approach to Geometric Optics for the Helmholtz Equation (L Gosse & F James); Adaptive Grid Generation for Evolutive Hamilton-Jacobi-Bellman Equations (L Grne); Solution and Application of Anisotropic Curvature Driven Evolution of Curves (and Surfaces) (K Mikula); An Adaptive Scheme on Unstructured Grids for the Shape-From-Shading Problem (M Sagona & A Seghini); On a Posteriori Error Estimation for Constant Obstacle Problems (A Veeser). Readership: Graduate students, researchers, academics and lecturers in numerical & computational mathematics, analysis & differential equations and mathematical modeling.

Innovative Methods for Numerical Solutions of Partial Differential Equations

Author: P. L. Roe,J. J. Chattot

Publisher: World Scientific

ISBN: 9810248105

Category: Mathematics

Page: 382

View: 8794

This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry.

Numerical Solutions for Partial Differential Equations

Problem Solving Using Mathematica

Author: Victor Grigor'e Ganzha,Evgenii Vasilev Vorozhtsov

Publisher: CRC Press

ISBN: 1351427504

Category: Mathematics

Page: 347

View: 2829

Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.

Splitting Methods for Partial Differential Equations with Rough Solutions

Analysis and MATLAB Programs

Author: Helge Holden

Publisher: European Mathematical Society

ISBN: 9783037190784

Category: Mathematics

Page: 226

View: 4629

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tacking. The theory is illustrated by numerous examples. There is a dedicated web page that provides MATLAB codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Decomposition Methods for Differential Equations

Theory and Applications

Author: Juergen Geiser

Publisher: CRC Press

ISBN: 9781439810972

Category: Mathematics

Page: 304

View: 7587

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.

The Birth of Numerical Analysis

Author: Adhemar Bultheel,Ronald Cools

Publisher: World Scientific

ISBN: 9812836268

Category: Electronic books

Page: 240

View: 4042

The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadrature (J N Lyness); Numerical Methods for Ordinary Differential Equations: Early Days (J C Butcher); Interview with Herbert Bishop Keller (H M Osinga); A Personal Perspective on the History of the Numerical Analysis of Fredholm Integral Equations of the Second Kind (K Atkinson); Memoires on Building on General Purpose Numerical Algorithms Library (B Ford); Recent Trends in High Performance Computing (J J Dongarra et al.); Nonnegativity Constraints in Numerical Analysis (D-H Chen & R J Plemmons); On Nonlinear Optimization Since 1959 (M J D Powell); The History and Development of Numerical Analysis in Scotland: A Personal Perspective (G Alistair Watson); Remembering Philip Rabinowitz (P J Davis & A S Fraenkel); My Early Experiences with Scientific Computation (P J Davis); Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations (R Piessens). Readership: Mathematicians in numerical analysis and mathematicians who are interested in the history of mathematics.

Analytical and Numerical Methods for Convection-dominated and Singularly Perturbed Problems

Author: Lubin Vulkov,John J. H. Miller,G. I. Shishkin

Publisher: Nova Publishers

ISBN: 9781560728481

Category: Mathematics

Page: 277

View: 4949

The proceedings of the Workshop on Analytical and Computational Methods for Convention-Dominated and Singularly Peturbed Problems, Lozenetz, Bulgaria, 27-31 August, 1998. The volume includes 13 lectures and 19 papers presented at the workshop, providing an overview of developments in the theory and applications of advanced numerical methods to problems having boundary and interior layers.

Numerical Analysis of Partial Differential Equations

Author: S. H, Lui

Publisher: John Wiley & Sons

ISBN: 1118111117

Category: Mathematics

Page: 512

View: 5024

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Dynamical Systems and Numerical Analysis

Author: Andrew Stuart,A. R. Humphries

Publisher: Cambridge University Press

ISBN: 9780521645638

Category: Mathematics

Page: 685

View: 1956

This book unites the study of dynamical systems and numerical solution of differential equations. The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulted as dynamical systems and the convergence and stability properties of the methods are examined. Topics studied include the stability of numerical methods for contractive, dissipative, gradient and Hamiltonian systems together with the convergence properties of equilibria, periodic solutions and strage attractors under numerical approximation. This book will be an invaluable tool for graduate students and researchers in the fields of numerical analysis and dynamical systems.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Author: A. A. Samarskii,Petr N. Vabishchevich

Publisher: Walter de Gruyter

ISBN: 3110205793

Category: Mathematics

Page: 452

View: 4596

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

Traveling Wave Analysis of Partial Differential Equations

Numerical and Analytical Methods with Matlab and Maple

Author: Graham Griffiths,William E. Schiesser

Publisher: Academic Press

ISBN: 9780123846532

Category: Mathematics

Page: 461

View: 8168

Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple