NMR Spectroscopy in Inorganic Chemistry

Author: Jonathan A. Iggo

Publisher: Oxford University Press, USA

ISBN: 9780198558903

Category: Science

Page: 87

View: 2746

Nuclear Magnetic Resonance (NMR) spectroscopy is the most important characterization technique in synthetic chemistry today. By giving a simple overview of the relevant theory, in non-mathematical terms, and avoiding the 'pattern recognition' approach frequently adopted, this book demystifies NMR. It contains examples from many different areas of Inorganic Chemistry which are closely related to the theory described.

Spectroscopy in Inorganic Chemistry

Author: C.N.R. Rao

Publisher: Elsevier

ISBN: 032315090X

Category: Science

Page: 424

View: 1950

Spectroscopy in Inorganic Chemistry, Volume I describes the innovations in various spectroscopic methods that are particularly effective in inorganic chemistry studies. This volume contains nine chapters; each chapter discusses a specific spectroscopic method, their fundamental principles, methods, instrumentation, advantages disadvantages, and application. Chapter 1 covers some of the general principles and experiments that have been used in the recording and interpretation of crystal spectra of molecules that contain transition-metal ions. Chapter 2 illustrates the application of spectroscopic techniques to the photochemistry of small inorganic molecules, non-transition-metal compounds, and transition-metal complexes. The remaining chapters examine several spectroscopic methods, such as matrix isolation, mass, soft X-ray, and Mössbauer spectroscopies, high-resolution NMR, and nuclear quadrupole resonance, with a particular emphasis on their effective application in inorganic chemistry studies. This book will be of great benefit to inorganic chemists, spectroscopists, and inorganic chemistry teachers and students.

Solution NMR of Paramagnetic Molecules

Applications to Metallobiomolecules and Models

Author: Ivano Bertini,Claudio Luchinat,Giacomo Parigi

Publisher: Elsevier

ISBN: 9780080541488

Category: Science

Page: 384

View: 1754

NMR is a growing technique which represents a generalized, spread, common tool for spectroscopy and for structural and dynamic investigation. Part of the field of competence of NMR is represented by molecules with unpaired electrons, which are called paramagnetic. The presence of unpaired electrons is at the same time a drawback (negative effect) and a precious source of information about structure and dynamics. New phenomena and effects are described which are due to the high magnetic fields and advances in the methodology. Solution NMR of Paramagnetic Molecules is unique in dealing with these matters. The scope is that of presenting a complete description, which is both rigorous and pictorial, of theory and experiments of NMR of paramagnetic molecules in solution. Pertinent examples are described. From the time dependent behaviour of electrons in the various metal ions including polimetallic systems to the hyperfine-based information, and from NMR experiments to constraints for solution structure determination. The book's major theme is how to perform high resolution NMR experiments and how to obtain structural and dynamic information on paramagnetic metal ion containing systems.

Basic 1H- and 13C-NMR Spectroscopy

Author: Metin Balci

Publisher: Elsevier

ISBN: 9780080525532

Category: Science

Page: 430

View: 1085

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. Basic 1H- and 13C-NMR Spectroscopy provides an introduction to the principles and applications of NMR spectroscopy. Whilst looking at the problems students encounter when using NMR spectroscopy, the author avoids the complicated mathematics that are applied within the field. Providing a rational description of the NMR phenomenon, this book is easy to read and is suitable for the undergraduate and graduate student in chemistry. Describes the fundamental principles of the pulse NMR experiment and 2D NMR spectra Easy to read and written with the undergraduate and graduate chemistry student in mind Provides a rational description of NMR spectroscopy without complicated mathematics

Structural Methods in Molecular Inorganic Chemistry

Author: D. W. H. Rankin,Norbert Mitzel,Carole Morrison

Publisher: John Wiley & Sons

ISBN: 1118462882

Category: Science

Page: 496

View: 9728

Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems. Following a general introduction to the tools and concepts in structural chemistry, the following topics are covered in detail: • computational chemistry • nuclear magnetic resonance spectroscopy • electron paramagnetic resonance spectroscopy • Mössbauer spectroscopy • rotational spectra and rotational structure • vibrational spectroscopy • electronic characterization techniques • diffraction methods • mass spectrometry The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems. Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material. Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.

Inorganic Spectroscopic Methods

Author: Alan K. Brisdon

Publisher: OUP Oxford

ISBN: 9780198559498

Category: Science

Page: 100

View: 9770

A knowledge of spectroscopic methods is required to interpret the shape and structure of compounds - this informative book concentrates on their application to inorganic compounds. The emphasis is placed on obtaining and interpreting the data rather than concentrating on the theory. To this end, examples are given in the text and worked through to show the processes involved in assigning spectra and obtaining information from them. This essential text for all undergraduate chemists will also benefit postgraduate students researching in the field of inorganic chemistry.

Spectroscopic Properties of Inorganic and Organometallic Compounds

Techniques, Materials and Applications

Author: Richard Douthwaite,Simon Duckett ,Jack Yarwood

Publisher: Royal Society of Chemistry

ISBN: 1849739196

Category: Science

Page: 299

View: 7203

Divided into sections mainly according to the particular spectroscopic technique used, researchers will find this an invaluable source of information on current methods and applications.

NMR and Chemistry

An introduction to modern NMR spectroscopy, Fourth Edition

Author: J.W. Akitt,B. E. Mann

Publisher: CRC Press

ISBN: 1351991124

Category: Science

Page: 400

View: 4987

Keeping mathematics to a minimum, this book introduces nuclear properties, nuclear screening, chemical shift, spin-spin coupling, and relaxation. It is one of the few books that provides the student with the physical background to NMR spectroscopy from the point of view of the whole of the periodic table rather than concentrating on the narrow applications of 1H and 13C NMR spectroscopy. Aids to structure determination, such as decoupling, the nuclear Overhauser effect, INEPT, DEPT, and special editing, and two dimensional NMR spectroscopy are discussed in detail with examples, including the complete assignment of the 1H and 13C NMR spectra of D-amygdain. The authors examine the requirements of a modern spectrometer and the effects of pulses and discuss the effects of dynamic processes as a function of temperature or pressure on NMR spectra. The book concludes with chapters on some of the applications of NMR spectroscopy to medical and non-medical imaging techniques and solid state chemistry of both I = F1/2 and I > F1/2 nuclei. Examples and problems, mainly from the recent inorganic/organometallic chemistry literature support the text throughout. Brief answers to all the problems are provided in the text with full answers at the end of the book.

High-resolution NMR Techniques in Organic Chemistry

Author: Timothy D. W. Claridge

Publisher: Newnes

ISBN: 0080546285

Category: Mathematics

Page: 383

View: 8316

"Nuclear Magnetic Resonance (NMR) Spectroscopy remains the foremost analytical technique for the structure elucidation of organic molecules and an indispensable tool for the synthetic, medicinal and natural product chemist. New techniques continue to emerge and the application of NMR methods continues to expand. High-Resolution NMR Techniques in Organic Chemistry is designed for use in academic and industrial NMR facilities, as a text for graduate-level NMR courses, and as an accessible reference for the chemist's or spectroscopist's desk." --Book Jacket.

Dynamic Nuclear Magnetic Resonance Spectroscopy

Author: Lloyd Jackman

Publisher: Elsevier

ISBN: 032314358X

Category: Science

Page: 676

View: 6154

Dynamic Nuclear Magnetic Resonance Spectroscopy provides an overview of the state of knowledge in dynamic nuclear magnetic resonance (DNMR) spectroscopy. The early chapters describe the theoretical basis and practical techniques which have or will be used for extracting kinetic data from DNMR spectra. The subsequent chapters provide reviews of the many areas in which DNMR spectroscopy has been applied. Key topics covered include nuclear exchange processes; band-shape analysis; application of nonselective pulsed NMR experiments: diffusion and chemical exchange; spin-spin relaxation time determination; rotation about single and double bonds in organic molecules; and dynamic molecular processes in inorganic and organometallic compounds. Also discussed are studies on stereochemical nonrigidity in organometallic and metal carbonyl compounds; fluxional allyl complexes; carbonium ion rearrangements; and proton transfer processes. It is hoped that this volume will provide a literature guide, source book, and progress report which will be helpful to all those who will continue or will begin work in this field.

Modern NMR Techniques for Chemistry Research

Author: A.E. Derome

Publisher: Elsevier

ISBN: 1483286428

Category: Science

Page: 299

View: 3574

Presents an introduction to modern NMR methods at a level suited to organic and inorganic chemists engaged in the solution of structural and mechanistic problems. The book assumes familiarity only with the simple use of proton and carbon spectra as sources of structural information and describes the advantages of pulse and Fourier transform spectroscopy which form the basis of all modern NMR experiments. Discussion of key experiments is illustrated by numerous examples of the solutions to real problems. The emphasis throughout is on the practical side of NMR and the book will be of great use to chemists engaged in both academic and industrial research who wish to realise the full possibilities of the new wave NMR.

Encyclopedia of Spectroscopy and Spectrometry

Author: N.A

Publisher: Academic Press

ISBN: 0128032251

Category: Reference

Page: 3584

View: 6195

This third edition of the Encyclopedia of Spectroscopy and Spectrometry provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry. Incorporates more than 150 color figures, 5,000 references, and 300 articles for a thorough examination of the field Highlights new research and promotes innovation in applied areas ranging from food science and forensics to biomedicine and health Presents a one-stop resource for quick access to answers and an in-depth examination of topics in the spectroscopy and spectrometry arenas

Multinuclear NMR

Author: J. Mason

Publisher: Springer Science & Business Media

ISBN: 1461317835

Category: Science

Page: 660

View: 8996

With the power and range of modern pulse spectrometers the compass of NMR spec troscopy is now very large for a single book-but we have undertaken this. Our book covers the Periodic Table as multinuclear spectrometers do, and introductory chapters are devoted to the essentials of the NMR experiment and its products. Primary products are chemical shifts (including anisotropies), spin-spin coupling constants, and relaxation times; the ultimate product is a knowledge of content and constitution, dynamic as well as static. Our province is chemical and biochemical rather than physical or technical; only passing reference is made to metallic solids or unstable species, or to practical NMR spectroscopy. Our aim is depth as well as breadth, to explain the fundamental processes, whether of nuclear magnetic shielding, spin-spin coupling, relaxation, or the multiple pulse sequences that have allowed the development of high-resolution studies of solids, multidimensional NMR spectroscopy, techniques for sensitivity enhancement, and so on. This book therefore combines the functions of advanced textbook and reference book. For reasonably comprehensive coverage in a single volume we have sum marized the information in tables and charts, and included all leading references.

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials

Author: Kenneth J.D. MacKenzie,M.E. Smith

Publisher: Elsevier

ISBN: 9780080537108

Category: Science

Page: 748

View: 6807

Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

NMR Spectroscopy in the Undergraduate Curriculum

Author: David Soulsby,Laura J. Anna,Anton S. Wallner

Publisher: ACS Symposium

ISBN: 9780841231382

Category: Science

Page: 192

View: 8916

The second volume of NMR Spectroscopy in the Undergraduate Curriculum continues the work started in the first volume in providing effective approaches for using nuclear magnetic resonance spectrometers as powerful tools for investigating a wide variety of phenomena at the undergraduate level. This volume focuses on first year and organic chemistry courses. The applications and strategies in this volume will be helpful to those who are looking to transform their curriculum by integrating more NMR spectroscopy, to those who might not have considered NMR spectroscopy as a tool for solving certain types of problems, or for those seeking funding for a new or replacement NMR spectrometer.

Nuclear Magnetic Resonance Spectroscopy of Boron Compounds

Author: Heinrich Nöth,Bernd Wrackmeyer

Publisher: Springer Science & Business Media

ISBN: 3642667570

Category: Science

Page: 464

View: 1180

The revolutionary impetus of the NMR methods in organic chemistry has parallels in the field of boron chemistry. lIB NMR spectroscopy provided a basis for the elucida tion of structures and reactions of the boron hydrides. However, although many studies have been carried out with the higher boranes, carboranes, metalloboranes, etc. , and although certain patterns have emerged, the correlation between the observed chemical shift and the assigned structural unit is still not fully understood. Therefore, predictions in this area are still rather limited, and semiquantitative interpretations are not yet pos sible. Several years ago Eaton and Lipscomb sUpImarized the status in this field in their book "NMR Studies of Boron Hydrides and Related Compounds" and a plethora of new data has accumulated since then. The book also contained material on simple bo rane derivatives, but they were not discussed in any detail. On the other hand many systematic studies, both synthetic and spectroscopic, have been conducted on these simple boron materials in the last decade. Thus a large amount of NMR information is available, not only on lIB but also on 1 H, 1 3 C, and 14 N. However, this information is widely scattered in the literature, and often the data are not discussed at all. It see med appropriate, therefore, to collect these data and to present them in one volume.

Phosphorus-31 NMR Spectroscopy

A Concise Introduction for the Synthetic Organic and Organometallic Chemist

Author: Olaf Kühl

Publisher: Springer Science & Business Media

ISBN: 9783540791188

Category: Science

Page: 132

View: 3102

Nuclear Magnetic Resonance is a powerful tool, especially for the identification of 1 13 hitherto unknown organic compounds. H- and C-NMR spectroscopy is known and applied by virtually every synthetically working Organic Chemist. Con- quently, the factors governing the differences in chemical shift values, based on chemical environment, bonding, temperature, solvent, pH, etc. , are well understood, and specialty methods developed for almost every conceivable structural challenge. Proton and carbon NMR spectroscopy is part of most bachelors degree courses, with advanced methods integrated into masters degree and other graduate courses. In view of this universal knowledge about proton and carbon NMR spectr- copy within the chemical community, it is remarkable that heteronuclear NMR is still looked upon as something of a curiosity. Admittedly, most organic compounds contain only nitrogen, oxygen, and sulfur atoms, as well as the obligatory hydrogen and carbon atoms, elements that have an unfavourable isotope distribution when it comes to NMR spectroscopy. Each of these three elements has a dominant isotope: 14 16 32 16 32 N (99. 63% natural abundance), O (99. 76%), and S (95. 02%), with O, S, and 34 14 S (4. 21%) NMR silent. N has a nuclear moment I = 1 and a sizeable quadrupolar moment that makes the NMR signals usually very broad and dif cult to analyse.

Practical Approaches to Biological Inorganic Chemistry

Author: Robert R. Crichton,Ricardo O. Louro

Publisher: Newnes

ISBN: 0444563598

Category: Science

Page: 336

View: 4061

The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. Many colour illustrations enable easier visualization of molecular mechanisms and structures Worked examples and problems are included to illustrate and test the reader’s understanding of each technique Written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures

Nuclear Magnetic Resonance

Author: P. J. Hore

Publisher: Oxford University Press, USA

ISBN: 0198703414

Category: Science

Page: 112

View: 4504

The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. Nuclear Magnetic Resonance offers a concise and accessible introduction to the physical principles of liquid-state NMR, a powerful technique for probing molecular structures. Examples, applications, and exercises are provided throughout to enable beginning undergraduates to get to grips with this important analytical technique. Online Resource Centre The Online Resource Centre to accompany Nuclear Magnetic Resonance features: For registered adopters of the text: * Figures from the book available to download For students: * Multiple-choice questions for self-directed learning * Full worked solutions to the end-of-chapter exercises