Multistate Models for the Analysis of Life History Data

Author: Richard J Cook,Jerald F. Lawless

Publisher: CRC Press

ISBN: 1351646052

Category: Mathematics

Page: 440

View: 8729

Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. Features Discusses a wide range of applications of multistate models Presents methods for both continuously and intermittently observed life history processes Gives a thorough discussion of conditionally independent censoring and observation processes Discusses models with random effects and joint models for two or more multistate processes Discusses and illustrates software for multistate analysis that is available in R Target audience includes those engaged in research and applications involving multistate models Richard Cook is Canada Research Chair in Statistical Methods for Health Research at the University of Waterloo. He has received the Gold Medal of the Statistical Society of Canada and is a Fellow of the American Statistical Association. He collaborates and consults widely on health research and has given many short courses. He and Dr. Lawless previously coauthored the influential book, The Statistical Analysis of Recurrent Events (Springer, 2007). Jerald Lawless is Distinguished Professor Emeritus at the University of Waterloo. He is a Fellow of the Royal Society of Canada, a Gold Medal recipient of the Statistical Society of Canada and Fellow of the American Statistical Association. He is a past editor of Technometrics and has collaborated and consulted in numerous areas. He has presented many short courses, with Dr. Cook and individually. "The authors of the book are internationally renowned experts in the field of multi-state modeling and have written an extremely clear and comprehensive book on the topic that covers many different aspects, from the fundamental theory to the practical side of analyzing data and interpreting results. The examples are well chosen to represent the most common types of multi-state processes that public health researchers could encounter. The inclusion of software code to illustrate how the models can be fit and interpreted is especially helpful to readers." (Mimi Kim, Albert Einstein College of Medicine)

Multistate Analysis of Life Histories with R

Author: Frans Willekens

Publisher: Springer

ISBN: 331908383X

Category: Mathematics

Page: 308

View: 8339

This book provides an introduction to multistate event history analysis. It is an extension of survival analysis, in which a single terminal event (endpoint) is considered and the time-to-event is studied. Multistate models focus on life histories or trajectories, conceptualized as sequences of states and sequences of transitions between states. Life histories are modeled as realizations of continuous-time Markov processes. The model parameters, transition rates, are estimated from data on event counts and populations at risk, using the statistical theory of counting processes. The Comprehensive R Network Archive (CRAN) includes several packages for multistate modeling. This book is about Biograph. The package is designed to (a) enhance exploratory analysis of life histories and (b) make multistate modeling accessible. The package incorporates utilities that connect to several packages for multistate modeling, including survival, eha, Epi, mvna,, mstate, msm, and TraMineR for sequence analysis. The book is a ‘hands-on’ presentation of Biograph and the packages listed. It is written from the perspective of the user. To help the user master the techniques and the software, a single data set is used to illustrate the methods and software. It is the subsample of the German Life History Survey, which was also used by Blossfeld and Rohwer in their popular textbook on event history modeling. Another data set, the Netherlands Family and Fertility Survey, is used to illustrate how Biograph can assist in answering questions on life paths of cohorts and individuals. The book is suitable as a textbook for graduate courses on event history analysis and introductory courses on competing risks and multistate models. It may also be used as a self-study book. The R code used in the book is available online. Frans Willekens is affiliated with the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany. He is Emeritus Professor of Demography at the University of Groningen, a Honorary Fellow of the Netherlands Interdisciplinary Demographic Institute (NIDI) in the Hague, and a Research Associate of the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. He is a member of Royal Netherlands Academy of Arts and Sciences (KNAW). He has contributed to the modeling and simulation of life histories, mainly in the context of population forecasting.

Competing Risks and Multistate Models with R

Author: Jan Beyersmann,Arthur Allignol,Martin Schumacher

Publisher: Springer Science & Business Media

ISBN: 1461420350

Category: Mathematics

Page: 245

View: 2135

This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.

Nonparametric Models for Longitudinal Data

With Implementation in R

Author: Colin O. Wu,Xin Tian

Publisher: CRC Press

ISBN: 0429939086

Category: Mathematics

Page: 552

View: 3164

Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precision medicine. It also provides flexible tools to describe the temporal trends, covariate effects and correlation structures of repeated measurements in longitudinal data. This book is intended for graduate students in statistics, data scientists and statisticians in biomedical sciences and public health. As experts in this area, the authors present extensive materials that are balanced between theoretical and practical topics. The statistical applications in real-life examples lead into meaningful interpretations and inferences. Features: Provides an overview of parametric and semiparametric methods Shows smoothing methods for unstructured nonparametric models Covers structured nonparametric models with time-varying coefficients Discusses nonparametric shared-parameter and mixed-effects models Presents nonparametric models for conditional distributions and functionals Illustrates implementations using R software packages Includes datasets and code in the authors’ website Contains asymptotic results and theoretical derivations Both authors are mathematical statisticians at the National Institutes of Health (NIH) and have published extensively in statistical and biomedical journals. Colin O. Wu earned his Ph.D. in statistics from the University of California, Berkeley (1990), and is also Adjunct Professor at the Georgetown University School of Medicine. He served as Associate Editor for Biometrics and Statistics in Medicine, and reviewer for National Science Foundation, NIH, and the U.S. Department of Veterans Affairs. Xin Tian earned her Ph.D. in statistics from Rutgers, the State University of New Jersey (2003). She has served on various NIH committees and collaborated extensively with clinical researchers.

Analysis of Multivariate Survival Data

Author: Philip Hougaard

Publisher: Springer Science & Business Media

ISBN: 1461213045

Category: Mathematics

Page: 542

View: 3337

Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. As the field is rather new, the concepts and the possible types of data are described in detail. Four different approaches to the analysis of such data are presented from an applied point of view.

Introducing Survival and Event History Analysis

Author: Melinda Mills

Publisher: SAGE Publications

ISBN: 1848601026

Category: Social Science

Page: 279

View: 7500

This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.

Stochastic Modelling of Social Processes

Author: Andreas Diekmann,Peter Mitter

Publisher: Academic Press

ISBN: 1483266567

Category: Social Science

Page: 352

View: 1348

Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.

Discrete Data Analysis with R

Visualization and Modeling Techniques for Categorical and Count Data

Author: Michael Friendly,David Meyer

Publisher: CRC Press

ISBN: 1498725856

Category: Mathematics

Page: 544

View: 1488

An Applied Treatment of Modern Graphical Methods for Analyzing Categorical Data Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical methods for exploring data, spotting unusual features, visualizing fitted models, and presenting results. The book is designed for advanced undergraduate and graduate students in the social and health sciences, epidemiology, economics, business, statistics, and biostatistics as well as researchers, methodologists, and consultants who can use the methods with their own data and analyses. Along with describing the necessary statistical theory, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to organize data, conduct an analysis, produce informative graphs, and evaluate what the graphs reveal about the data. The first part of the book contains introductory material on graphical methods for discrete data, basic R skills, and methods for fitting and visualizing one-way discrete distributions. The second part focuses on simple, traditional nonparametric tests and exploratory methods for visualizing patterns of association in two-way and larger frequency tables. The final part of the text discusses model-based methods for the analysis of discrete data. Web Resource The data sets and R software used, including the authors’ own vcd and vcdExtra packages, are available at http://cran.r-project.org.

Flowgraph Models for Multistate Time-to-Event Data

Author: Aparna V. Huzurbazar

Publisher: John Wiley & Sons

ISBN: 0471686530

Category: Mathematics

Page: 320

View: 1147

A unique introduction to the innovative methodology of statistical flowgraphs This book offers a practical, application-based approach to flowgraph models for time-to-event data. It clearly shows how this innovative new methodology can be used to analyze data from semi-Markov processes without prior knowledge of stochastic processes--opening the door to interesting applications in survival analysis and reliability as well as stochastic processes. Unlike other books on multistate time-to-event data, this work emphasizes reliability and not just biostatistics, illustrating each method with medical and engineering examples. It demonstrates how flowgraphs bring together applied probability techniques and combine them with data analysis and statistical methods to answer questions of practical interest. Bayesian methods of data analysis are emphasized. Coverage includes: * Clear instructions on how to model multistate time-to-event data using flowgraph models * An emphasis on computation, real data, and Bayesian methods for problem solving * Real-world examples for analyzing data from stochastic processes * The use of flowgraph models to analyze complex stochastic networks * Exercise sets to reinforce the practical approach of this volume Flowgraph Models for Multistate Time-to-Event Data is an invaluable resource/reference for researchers in biostatistics/survival analysis, systems engineering, and in fields that use stochastic processes, including anthropology, biology, psychology, computer science, and engineering.

Statistical Analysis of Panel Count Data

Author: Jianguo Sun,Xingqiu Zhao

Publisher: Springer Science & Business Media

ISBN: 1461487153

Category: Medical

Page: 271

View: 345

Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.

Competing Risks and Multistate Models with R

Author: Jan Beyersmann,Arthur Allignol,Martin Schumacher

Publisher: Springer Science & Business Media

ISBN: 1461420350

Category: Mathematics

Page: 245

View: 1947

This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.

Multi-State Survival Models for Interval-Censored Data

Author: Ardo van den Hout

Publisher: CRC Press

ISBN: 1315356732

Category: Mathematics

Page: 256

View: 3035

Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.

Dynamic Prediction in Clinical Survival Analysis

Author: Hans van Houwelingen,Hein Putter

Publisher: CRC Press

ISBN: 1439835438

Category: Mathematics

Page: 250

View: 5664

There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated Part III is dedicated to the use of time-dependent information in dynamic prediction Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.

Advances in Survival Analysis

Author: N. Balakrishnan,C.R. Rao

Publisher: Elsevier

ISBN: 9780080495118

Category: Mathematics

Page: 822

View: 4221

Handbook of Statistics: Advances in Survival Analysis covers all important topics in the area of Survival Analysis. Each topic has been covered by one or more chapters written by internationally renowned experts. Each chapter provides a comprehensive and up-to-date review of the topic. Several new illustrative examples have been used to demonstrate the methodologies developed. The book also includes an exhaustive list of important references in the area of Survival Analysis. Includes up-to-date reviews on many important topics Chapters written by many internationally renowned experts Some Chapters provide completely new methodologies and analyses Includes some new data and methods of analyzing them

Advances in Statistical Methods for the Health Sciences

Applications to Cancer and AIDS Studies, Genome Sequence Analysis, and Survival Analysis

Author: Jean-Louis Auget,N. Balakrishnan,Mounir Mesbah,Geert Molenberghs

Publisher: Springer Science & Business Media

ISBN: 9780817645427

Category: Mathematics

Page: 540

View: 1783

Statistical methods have become an increasingly important and integral part of research in the health sciences. Many sophisticated methodologies have been developed for specific applications and problems. This self-contained comprehensive volume covers a wide range of topics pertaining to new statistical methods in the health sciences, including epidemiology, pharmacovigilance, quality of life, survival analysis, and genomics. The book will serve the health science community as well as practitioners, researchers, and graduate students in applied probability, statistics, and biostatistics.

The statistical analysis of failure time data

Author: J. D. Kalbfleisch,Ross L. Prentice

Publisher: Wiley-Interscience

ISBN: 9780471055198

Category: Mathematics

Page: 321

View: 8883

Synthesizes statistical models and methods for the analysis of failure time or ''survival'' data. Focuses on regression problems with survival data, specifically the estimation of regression coefficients and distributional shape in the presence of shaping. Deals with the theory, applications and extensions of the proportional hazards model. Includes worked examples and problems for solution.

Dynamical Biostatistical Models

Author: Daniel Commenges,Helene Jacqmin-Gadda

Publisher: CRC Press

ISBN: 1498729681

Category: Mathematics

Page: 374

View: 1304

Dynamical Biostatistical Models presents statistical models and methods for the analysis of longitudinal data. The book focuses on models for analyzing repeated measures of quantitative and qualitative variables and events history, including survival and multistate models. Most of the advanced methods, such as multistate and joint models, can be applied using SAS or R software. The book describes advanced regression models that include the time dimension, such as mixed-effect models, survival models, multistate models, and joint models for repeated measures and time-to-event data. It also explores the possibility of unifying these models through a stochastic process point of view and introduces the dynamic approach to causal inference. Drawing on much of their own extensive research, the authors use three main examples throughout the text to illustrate epidemiological questions and methodological issues. Readers will see how each method is applied to real data and how to interpret the results.

Joint Modeling of Longitudinal and Time-to-Event Data

Author: Robert Elashoff,Gang li,Ning Li

Publisher: CRC Press

ISBN: 1439807833

Category: Mathematics

Page: 261

View: 8225

Longitudinal studies often incur several problems that challenge standard statistical methods for data analysis. These problems include non-ignorable missing data in longitudinal measurements of one or more response variables, informative observation times of longitudinal data, and survival analysis with intermittently measured time-dependent covariates that are subject to measurement error and/or substantial biological variation. Joint modeling of longitudinal and time-to-event data has emerged as a novel approach to handle these issues. Joint Modeling of Longitudinal and Time-to-Event Data provides a systematic introduction and review of state-of-the-art statistical methodology in this active research field. The methods are illustrated by real data examples from a wide range of clinical research topics. A collection of data sets and software for practical implementation of the joint modeling methodologies are available through the book website. This book serves as a reference book for scientific investigators who need to analyze longitudinal and/or survival data, as well as researchers developing methodology in this field. It may also be used as a textbook for a graduate level course in biostatistics or statistics.

The Statistical Analysis of Recurrent Events

Author: Richard J. Cook,Jerald Lawless

Publisher: Springer Science & Business Media

ISBN: 0387698094

Category: Medical

Page: 404

View: 1643

This book presents models and statistical methods for the analysis of recurrent event data. The authors provide broad, detailed coverage of the major approaches to analysis, while emphasizing the modeling assumptions that they are based on. More general intensity-based models are also considered, as well as simpler models that focus on rate or mean functions. Parametric, nonparametric and semiparametric methodologies are all covered, with procedures for estimation, testing and model checking.