*Continuous Systems and Differential Equations*

Author: Thomas Witelski,Mark Bowen

Publisher: Springer

ISBN: 3319230425

Category: Mathematics

Page: 305

View: 1013

Skip to content
# Nothing Found

### Methods of Mathematical Modelling

This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

### Essential Partial Differential Equations

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

### Differential Equations and Dynamical Systems

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

### An Introduction to Mathematical Modeling

Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

### Mathematical Modelling Techniques

Highly useful volume discusses the types of models, how to formulate and manipulate them for best results. Numerous examples.

### Mathematical Modeling

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

### Dynamical Systems with Applications using MATLAB®

This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica

### Mathematical Modeling for the Life Sciences

Provides a wide range of mathematical models currently used in the life sciences Each model is thoroughly explained and illustrated by example Includes three appendices to allow for independent reading

### Modeling Life

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

### Mathematical Modelling Skills

The aim of this book is to assist the reader to build up the necessary range of skills needed to be able to solve problems by mathematical modelling. After an introduction to the general principles and advantages of mathematical modelling, chapters 1 to 4 concentrate on the development of basic modelling skills. Each of chapters 5 to 11 isolates a particular modelling concept and provides exercises aimed at developing skills in the use of that concept. The later chapters may be conveniently read in any order as they are self contained. In keeping with the Work Out approach, each chapter contains a large number of examples and exercises, taken from a variety of subject areas and covering a broad range of difficulty. Answers are provided wherever appropriate.

### Mathematical Modeling

Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.

### Mathematical Modeling

The whole picture of Mathematical Modeling is systematically and thoroughly explained in this text for undergraduate and graduate students of mathematics, engineering, economics, finance, biology, chemistry, and physics. This textbook gives an overview of the spectrum of modeling techniques, deterministic and stochastic methods, and first-principle and empirical solutions. Complete range: The text continuously covers the complete range of basic modeling techniques: it provides a consistent transition from simple algebraic analysis methods to simulation methods used for research. Such an overview of the spectrum of modeling techniques is very helpful for the understanding of how a research problem considered can be appropriately addressed. Complete methods: Real-world processes always involve uncertainty, and the consideration of randomness is often relevant. Many students know deterministic methods, but they do hardly have access to stochastic methods, which are described in advanced textbooks on probability theory. The book develops consistently both deterministic and stochastic methods. In particular, it shows how deterministic methods are generalized by stochastic methods. Complete solutions: A variety of empirical approximations is often available for the modeling of processes. The question of which assumption is valid under certain conditions is clearly relevant. The book provides a bridge between empirical modeling and first-principle methods: it explains how the principles of modeling can be used to explain the validity of empirical assumptions. The basic features of micro-scale and macro-scale modeling are discussed – which is an important problem of current research.

### Mathematical Modelling in Science and Technology

Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.

### Mathematical Models in Biology

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

### Partial Differential Equations

This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.

### Elements of Applied Bifurcation Theory

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

### Elementary Analysis

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

### Dynamic Equations on Time Scales

The study of dynamic equations on a measure chain (time scale) goes back to its founder S. Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on measure chains can build bridges between continuous and discrete mathematics. Further, the study of measure chain theory has led to several important applications, e.g., in the study of insect population models, neural networks, heat transfer, and epidemic models. Key features of the book: * Introduction to measure chain theory; discussion of its usefulness in allowing for the simultaneous development of differential equations and difference equations without having to repeat analogous proofs * Many classical formulas or procedures for differential and difference equations cast in a new light * New analogues of many of the "special functions" studied * Examination of the properties of the "exponential function" on time scales, which can be defined and investigated using a particularly simple linear equation * Additional topics covered: self-adjoint equations, linear systems, higher order equations, dynamic inequalities, and symplectic dynamic systems * Clear, motivated exposition, beginning with preliminaries and progressing to more sophisticated text * Ample examples and exercises throughout the book * Solutions to selected problems Requiring only a first semester of calculus and linear algebra, Dynamic Equations on Time Scales may be considered as an interesting approach to differential equations via exposure to continuous and discrete analysis. This approach provides an early encounter with many applications in such areas as biology, physics, and engineering. Parts of the book may be used in a special topics seminar at the senior undergraduate or beginning graduate levels. Finally, the work may serve as a reference to stimulate the development of new kinds of equations with potentially new applications.

### Optimization—Theory and Practice

Optimization is a field important in its own right but is also integral to numerous applied sciences, including operations research, management science, economics, finance and all branches of mathematics-oriented engineering. Constrained optimization models are one of the most widely used mathematical models in operations research and management science. This book gives a modern and well-balanced presentation of the subject, focusing on theory but also including algorithims and examples from various real-world applications. Detailed examples and counter-examples are provided--as are exercises, solutions and helpful hints, and Matlab/Maple supplements.

### Stochastic Simulation and Monte Carlo Methods

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Full PDF eBook Download Free

*Continuous Systems and Differential Equations*

Author: Thomas Witelski,Mark Bowen

Publisher: Springer

ISBN: 3319230425

Category: Mathematics

Page: 305

View: 1013

*Analytical and Computational Aspects*

Author: David F. Griffiths,John W. Dold,David J. Silvester

Publisher: Springer

ISBN: 3319225693

Category: Mathematics

Page: 368

View: 1754

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 1950

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 0486137120

Category: Mathematics

Page: 272

View: 1565

Author: Rutherford Aris

Publisher: Courier Corporation

ISBN: 0486138895

Category: Technology & Engineering

Page: 288

View: 4486

Author: Christof Eck,Harald Garcke,Peter Knabner

Publisher: Springer

ISBN: 3319551612

Category: Mathematics

Page: 509

View: 2865

Author: Stephen Lynch

Publisher: Springer

ISBN: 3319068202

Category: Mathematics

Page: 514

View: 4056

Author: Jacques Istas

Publisher: Springer Science & Business Media

ISBN: 354027877X

Category: Mathematics

Page: 168

View: 7770

*The Mathematics of Biological Systems*

Author: Alan Garfinkel,Jane Shevtsov,Yina Guo

Publisher: Springer

ISBN: 3319597310

Category: Mathematics

Page: 445

View: 6540

Author: Dilwyn Edwards,Michael Hamson

Publisher: Macmillan International Higher Education

ISBN: 1349132500

Category: Applied mathematics

Page: 164

View: 1074

*Models, Analysis and Applications*

Author: Sandip Banerjee

Publisher: CRC Press

ISBN: 1439854513

Category: Mathematics

Page: 276

View: 9116

Author: Stefan Heinz

Publisher: Springer Science & Business Media

ISBN: 9783642203114

Category: Computers

Page: 460

View: 4243

*The Fourth International Conference, Zurich, Switzerland, August 1983*

Author: Xavier J.R. Avula,Rudolf E. Kalman,Anthanasios I. Liapis

Publisher: Elsevier

ISBN: 1483190595

Category: Mathematics

Page: 1022

View: 1476

Author: Leah Edelstein-Keshet

Publisher: SIAM

ISBN: 9780898719147

Category: Biology

Page: 586

View: 8211

*Mathematical Techniques for Engineers*

Author: Marcelo Epstein

Publisher: Springer

ISBN: 3319552120

Category: Technology & Engineering

Page: 255

View: 9511

Author: Yuri Kuznetsov

Publisher: Springer Science & Business Media

ISBN: 9780387219066

Category: Mathematics

Page: 634

View: 9023

*The Theory of Calculus*

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 1074

*An Introduction With Applications*

Author: Martin Bohner,Allan Peterson

Publisher: Springer Science & Business Media

ISBN: 9780817642259

Category: Computers

Page: 358

View: 9892

Author: Wilhelm Forst,Dieter Hoffmann

Publisher: Springer Science & Business Media

ISBN: 0387789766

Category: Mathematics

Page: 402

View: 7907

*Mathematical Foundations of Stochastic Simulation*

Author: Carl Graham,Denis Talay

Publisher: Springer Science & Business Media

ISBN: 3642393632

Category: Mathematics

Page: 260

View: 8920