Measures of Symmetry for Convex Sets and Stability

Author: Gabor Toth

Publisher: Springer

ISBN: 3319237330

Category: Mathematics

Page: 278

View: 9314

This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set—measures of symmetry—and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric—the phenomenon of stability. By gathering the subject’s core ideas and highlights around Grünbaum’s general notion of measure of symmetry, it paints a coherent picture of the subject, and guides the reader from the basics to the state-of-the-art. The exposition takes various paths to results in order to develop the reader’s grasp of the unity of ideas, while interspersed remarks enrich the material with a behind-the-scenes view of corollaries and logical connections, alternative proofs, and allied results from the literature. Numerous illustrations elucidate definitions and key constructions, and over 70 exercises—with hints and references for the more difficult ones—test and sharpen the reader’s comprehension. The presentation includes: a basic course covering foundational notions in convex geometry, the three pillars of the combinatorial theory (the theorems of Carathéodory, Radon, and Helly), critical sets and Minkowski measure, the Minkowski–Radon inequality, and, to illustrate the general theory, a study of convex bodies of constant width; two proofs of F. John’s ellipsoid theorem; a treatment of the stability of Minkowski measure, the Banach–Mazur metric, and Groemer’s stability estimate for the Brunn–Minkowski inequality; important specializations of Grünbaum’s abstract measure of symmetry, such as Winternitz measure, the Rogers–Shepard volume ratio, and Guo’s Lp -Minkowski measure; a construction by the author of a new sequence of measures of symmetry, the kth mean Minkowski measure; and lastly, an intriguing application to the moduli space of certain distinguished maps from a Riemannian homogeneous space to spheres—illustrating the broad mathematical relevance of the book’s subject.

Linear Algebra and Matrices

Author: Shmuel Friedland,Mohsen Aliabadi

Publisher: SIAM

ISBN: 161197514X

Category: Algebras, Linear

Page: 285

View: 4788

This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.

5000 Jahre Geometrie

Geschichte Kulturen Menschen

Author: Christoph J. Scriba,Peter Schreiber

Publisher: Springer-Verlag

ISBN: 3662045001

Category: Mathematics

Page: 596

View: 3999

Lange bevor die Schrift entwickelt wurde, hat der Mensch geometrische Strukturen wahrgenommen und systematisch verwendet: ob beim Weben oder Flechten einfacher zweidimensionaler Muster oder beim Bauen mit dreidimensionalen Körpern. Das Buch liefert einen faszinierenden Überblick über die geometrischen Vorstellungen und Erkenntnisse der Menschheit von der Urgesellschaft bis hin zu den mathematischen und künstlerischen Ideen des 20. Jahrhunderts.

Kreis und Kugel

Author: Wilhelm Blaschke

Publisher: Walter de Gruyter

ISBN: 3111506932

Category: Mathematics

Page: 175

View: 5905


Numerische Behandlung partieller Differentialgleichungen

Author: Christian Großmann,Hans-Görg Roos

Publisher: Springer-Verlag

ISBN: 9783519220893

Category: Mathematics

Page: 572

View: 9878

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 2989

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Die Gruppentheoretische Methode in der Quantenmechanik

Author: Bartel Leendert van der Waerden

Publisher: Springer-Verlag

ISBN: 3662021870

Category: Mathematics

Page: 160

View: 7322

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie

Author: Paulo Ribenboim

Publisher: Springer-Verlag

ISBN: 3540879579

Category: Mathematics

Page: 391

View: 5450

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 1421

Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Wertorientiertes Risikomanagement von Versicherungsunternehmen

Author: Marcus Kriele,Jochen Wolf

Publisher: Springer-Verlag

ISBN: 3662502577

Category: Mathematics

Page: 453

View: 6627

Dieses Buch gibt einen methodisch fundierten Zugang zum wertorientierten Risikomanagement, einem fachübergreifenden Aufgabengebiet, das Komponenten aus dem Controlling und dem Aktuariat umfasst. Der anwendungsorientierten Ansatz versetzt den Leser in die Lage, ein auf quantitativen Methoden basiertes Risikomanagement unter kritischer Würdigung seiner Grenzen praktisch im Unternehmen zu implementieren. Die Schwerpunkte des Buches sind hierbei Risikokapital und Kapitalallokation, Erfolgsmessung und wertorientierte Steuerung. Es wird außerdem der Zusammenhang zu regulatorischen Entwicklungen (z. B. Solvency 2) hergestellt. In der Neuauflage wurden die Abschnitte über Solvency 2 vollständig überarbeitet und aktualisiert. Außerdem enthält dieses Buch ausführliche Rechenbeispiele, die in der Open Source Skriptensprache Julia programmiert wurden und aus dem Internet heruntergeladen werden können.

Dirichlet Forms and Analysis on Wiener Space

Author: Nicolas Bouleau,Francis Hirsch

Publisher: Walter de Gruyter

ISBN: 311085838X

Category: Mathematics

Page: 335

View: 9709

The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)