Author: Lawrence Craig Evans,Ronald F. Gariepy

Publisher: CRC Press

ISBN: 1482242397

Category: Mathematics

Page: 313

View: 7883

Skip to content
# Nothing Found

### Measure Theory and Fine Properties of Functions, Revised Edition

Measure Theory and Fine Properties of Functions, Revised Edition provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions. Topics covered include a quick review of abstract measure theory, theorems and differentiation in Rn, Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions as well as functions of bounded variation. The text provides complete proofs of many key results omitted from other books, including Besicovitch's covering theorem, Rademacher's theorem (on the differentiability a.e. of Lipschitz functions), area and coarea formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Aleksandrov's theorem (on the twice differentiability a.e. of convex functions). This revised edition includes countless improvements in notation, format, and clarity of exposition. Also new are several sections describing the π-λ theorem, weak compactness criteria in L1, and Young measure methods for weak convergence. In addition, the bibliography has been updated. Topics are carefully selected and the proofs are succinct, but complete. This book provides ideal reading for mathematicians and graduate students in pure and applied mathematics.

### Measure Theory and Fine Properties of Functions

This book provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space and emphasizes the roles of Hausdorff measure and the capacity in characterizing the fine properties of sets and functions. Topics covered include a quick review of abstract measure theory, theorems and differentiation in Mn, lower Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions and functions of bounded variation. The text provides complete proofs of many key results omitted from other books, including Besicovitch's Covering Theorem, Rademacher's Theorem (on the differentiability a.e. of Lipschitz functions), the Area and Coarea Formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Alexandro's Theorem (on the twice differentiability a.e. of convex functions). Topics are carefully selected and the proofs succinct, but complete, which makes this book ideal reading for applied mathematicians and graduate students in applied mathematics.

### Sets of Finite Perimeter and Geometric Variational Problems

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

### Modern Real Analysis

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.

### A First Course in Sobolev Spaces: Second Edition

This book is about differentiation of functions. It is divided into two parts, which can be used as different textbooks, one for an advanced undergraduate course in functions of one variable and one for a graduate course on Sobolev functions. The first part develops the theory of monotone, absolutely continuous, and bounded variation functions of one variable and their relationship with Lebesgue–Stieltjes measures and Sobolev functions. It also studies decreasing rearrangement and curves. The second edition includes a chapter on functions mapping time into Banach spaces. The second part of the book studies functions of several variables. It begins with an overview of classical results such as Rademacher's and Stepanoff's differentiability theorems, Whitney's extension theorem, Brouwer's fixed point theorem, and the divergence theorem for Lipschitz domains. It then moves to distributions, Fourier transforms and tempered distributions. The remaining chapters are a treatise on Sobolev functions. The second edition focuses more on higher order derivatives and it includes the interpolation theorems of Gagliardo and Nirenberg. It studies embedding theorems, extension domains, chain rule, superposition, Poincaré's inequalities and traces. A major change compared to the first edition is the chapter on Besov spaces, which are now treated using interpolation theory.

### Singular Integrals and Differentiability Properties of Functions (PMS-30)

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

### Functional Analysis, Calculus of Variations and Optimal Control

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.

### Essential Results of Functional Analysis

Functional analysis is a broad mathematical area with strong connections to many domains within mathematics and physics. This book, based on a first-year graduate course taught by Robert J. Zimmer at the University of Chicago, is a complete, concise presentation of fundamental ideas and theorems of functional analysis. It introduces essential notions and results from many areas of mathematics to which functional analysis makes important contributions, and it demonstrates the unity of perspective and technique made possible by the functional analytic approach. Zimmer provides an introductory chapter summarizing measure theory and the elementary theory of Banach and Hilbert spaces, followed by a discussion of various examples of topological vector spaces, seminorms defining them, and natural classes of linear operators. He then presents basic results for a wide range of topics: convexity and fixed point theorems, compact operators, compact groups and their representations, spectral theory of bounded operators, ergodic theory, commutative C*-algebras, Fourier transforms, Sobolev embedding theorems, distributions, and elliptic differential operators. In treating all of these topics, Zimmer's emphasis is not on the development of all related machinery or on encyclopedic coverage but rather on the direct, complete presentation of central theorems and the structural framework and examples needed to understand them. Sets of exercises are included at the end of each chapter. For graduate students and researchers in mathematics who have mastered elementary analysis, this book is an entrée and reference to the full range of theory and applications in which functional analysis plays a part. For physics students and researchers interested in these topics, the lectures supply a thorough mathematical grounding.

### Geometric Measure Theory

"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)

### Geometry of Sets and Measures in Euclidean Spaces

This book studies the geometric properties of general sets and measures in euclidean space.

### Gamma-convergence for Beginners

This is a handbook of Gamma-convergence, which is a theoretical tool to study problems in applied mathematics where varying parameters are present, with many applications that range from mechanics to computer vision.

### Gradient Flows

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

### Lebesgue Integration on Euclidean Space

Lebesgue Integration on Euclidean Space contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. Throughout the text, many exercises are incorporated, enabling students to apply new ideas immediately. Jones strives to present a slow introduction to Lebesgue integration by dealing with n-dimensional spaces from the outset. In addition, the text provides students a thorough treatment of Fourier analysis, while holistically preparing students to become workers in real analysis.

### An Introduction to Measure Theory

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

### Geometric Measure Theory

This work is intended to give a quick overview on the subject of the geometric measure theory with emphases on various basic ideas, techniques and their applications in problems arising in the calculus of variations, geometrical analysis and nonlinear partial differential equations.

### Measure Theory and Integration, Second Edition

Significantly revised and expanded, this authoritative reference/text comprehensively describes concepts in measure theory, classical integration, and generalized Riemann integration of both scalar and vector types-providing a complete and detailed review of every aspect of measure and integration theory using valuable examples, exercises, and applications. With more than 170 references for further investigation of the subject, this Second Edition provides more than 60 pages of new information, as well as a new chapter on nonabsolute integrals contains extended discussions on the four basic results of Banach spaces presents an in-depth analysis of the classical integrations with many applications, including integration of nonmeasurable functions, Lebesgue spaces, and their properties details the basic properties and extensions of the Lebesgue-Carathéodory measure theory, as well as the structure and convergence of real measurable functions covers the Stone isomorphism theorem, the lifting theorem, the Daniell method of integration, and capacity theory Measure Theory and Integration, Second Edition is a valuable reference for all pure and applied mathematicians, statisticians, and mathematical analysts, and an outstanding text for all graduate students in these disciplines.

### Riemannian Geometry and Geometric Analysis

This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

### Measure Theory

Useful as a text for students and a reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory most useful for its application in modern analysis. Coverage includes sets and classes, measures and outer measures, Haar measure and measure and topology in groups. From the reviews: "Will serve the interested student to find his way to active and creative work in the field of Hilbert space theory." --MATHEMATICAL REVIEWS

### Navier-Stokes Equations

Both an original contribution and a lucid introduction to mathematical aspects of fluid mechanics, Navier-Stokes Equations provides a compact and self-contained course on these classical, nonlinear, partial differential equations, which are used to describe and analyze fluid dynamics and the flow of gases.

### The Theory of Functions of Real Variables

This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.

Full PDF eBook Download Free

Author: Lawrence Craig Evans,Ronald F. Gariepy

Publisher: CRC Press

ISBN: 1482242397

Category: Mathematics

Page: 313

View: 7883

Author: LawrenceCraig Evans

Publisher: Routledge

ISBN: 1351432826

Category: Mathematics

Page: 288

View: 9059

*An Introduction to Geometric Measure Theory*

Author: Francesco Maggi

Publisher: Cambridge University Press

ISBN: 1139560891

Category: Mathematics

Page: N.A

View: 6780

Author: William P. Ziemer

Publisher: Springer

ISBN: 331964629X

Category: Mathematics

Page: 382

View: 3906

Author: Giovanni Leoni

Publisher: American Mathematical Soc.

ISBN: 1470429217

Category: Sobolev spaces

Page: 734

View: 4522

Author: Elias M. Stein

Publisher: Princeton University Press

ISBN: 1400883881

Category: Mathematics

Page: 304

View: 9046

Author: Francis Clarke

Publisher: Springer Science & Business Media

ISBN: 1447148207

Category: Mathematics

Page: 591

View: 3862

Author: Robert J. Zimmer

Publisher: University of Chicago Press

ISBN: 9780226983387

Category: Mathematics

Page: 157

View: 4589

Author: Herbert Federer

Publisher: Springer

ISBN: 3642620108

Category: Mathematics

Page: 677

View: 4548

*Fractals and Rectifiability*

Author: Pertti Mattila

Publisher: Cambridge University Press

ISBN: 9780521655958

Category: Mathematics

Page: 343

View: 3757

Author: Andrea Braides

Publisher: Clarendon Press

ISBN: 0198507844

Category: Mathematics

Page: 218

View: 3736

*In Metric Spaces and in the Space of Probability Measures*

Author: Luigi Ambrosio,Nicola Gigli,Giuseppe Savare

Publisher: Springer Science & Business Media

ISBN: 9783764387228

Category: Mathematics

Page: 334

View: 5916

Author: Frank Jones

Publisher: Jones & Bartlett Learning

ISBN: 9780763717087

Category: Computers

Page: 588

View: 5547

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 8606

*An Introduction*

Author: Fanghua Lin,Xiaoping Yang

Publisher: International Pressof Boston Incorporated

ISBN: 9781571461254

Category: Mathematics

Page: 237

View: 2446

Author: M.M. Rao

Publisher: CRC Press

ISBN: 9780824754013

Category: Mathematics

Page: 792

View: 9091

Author: Jürgen Jost

Publisher: Springer

ISBN: 3319618601

Category: Mathematics

Page: 697

View: 2881

Author: Paul R. Halmos

Publisher: Springer

ISBN: 1468494406

Category: Mathematics

Page: 304

View: 7524

Author: Peter Constantin,Ciprian Foias

Publisher: University of Chicago Press

ISBN: 9780226115498

Category: Mathematics

Page: 190

View: 3534

*Second Edition*

Author: Lawrence M Graves

Publisher: Courier Corporation

ISBN: 0486158136

Category: Mathematics

Page: 400

View: 3770