Mathematical Modelling Techniques

Author: Rutherford Aris

Publisher: Courier Corporation

ISBN: 0486138895

Category: Technology & Engineering

Page: 288

View: 323

Highly useful volume discusses the types of models, how to formulate and manipulate them for best results. Numerous examples.

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 9780486411804

Category: Mathematics

Page: 256

View: 8015

Accessible text features over 100 reality-based examples pulled from the science, engineering and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Mathematical Modelling and Numerical Methods in Finance

Special Volume

Author: N.A

Publisher: Elsevier

ISBN: 0080931006

Category: Mathematics

Page: 684

View: 3212

Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas and results Contributors are leaders of the field

Methods of Mathematical Modelling

Continuous Systems and Differential Equations

Author: Thomas Witelski,Mark Bowen

Publisher: Springer

ISBN: 3319230425

Category: Mathematics

Page: 305

View: 5314

This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

Mathematische Modellierung

Author: Christof Eck,Harald Garcke,Peter Knabner

Publisher: Springer-Verlag

ISBN: 3662543354

Category: Mathematics

Page: 515

View: 4765

Das Lehrbuch bietet eine lebendige und anschauliche Einführung in die mathematische Modellierung von Phänomenen aus den Natur- und Ingenieurwissenschaften. Leser lernen, mathematische Modelle zu verstehen und selbst herzuleiten und finden eine Fülle von Beispielen, u. a. aus den Bereichen chemische Reaktionskinetik, Populationsdynamik, Strömungsdynamik, Elastizitätstheorie und Kristallwachstum. Die Methoden der Linearen Algebra, der Analysis und der Theorie der gewöhnlichen und partiellen Differentialgleichungen werden sorgfältig eingeführt.

Mathematical Modelling

Author: Jagat Narain Kapur

Publisher: New Age International

ISBN: 9788122400069

Category: Mathematical models

Page: 259

View: 6013

Each Chapter Of The Book Deals With Mathematical Modelling Through One Or More Specified Techniques. Thus There Are Chapters On Mathematical Modelling Through Algebra, Geometry, Trigonometry And Calculus, Through Ordinary Differential Equations Of First And Second Order, Through Systems Of Differential Equations, Through Difference Equations, Through Partial Differential Equations, Through Functional Equations And Integral Equations, Through Delay-Differential, Differential-Difference And Integro-Differential Equations, Through Calculus Of Variations And Dynamic Programming, Through Graphs, Through Mathematical Programming, Maximum Principle And Maximum Entropy Principle.Each Chapter Contains Mathematical Models From Physical, Biological, Social, Management Sciences And Engineering And Technology And Illustrates Unity In Diversity Of Mathematical Sciences.The Book Contains Plenty Of Exercises In Mathematical Modelling And Is Aimed To Give A Panoramic View Of Applications Of Modelling In All Fields Of Knowledge. It Contains Both Probabilistic And Deterministic Models.The Book Presumes Only The Knowledge Of Undergraduate Mathematics And Can Be Used As A Textbook At Senior Undergraduate Or Post-Graduate Level For A One Or Two- Semester Course For Students Of Mathematics, Statistics, Physical, Social And Biological Sciences And Engineering. It Can Also Be Useful For All Users Of Mathematics And For All Mathematical Modellers.

Mathematical Modeling

Applications with GeoGebra

Author: Jonas Hall,Thomas Lingefjärd

Publisher: John Wiley & Sons

ISBN: 1119102693

Category: Mathematics

Page: 568

View: 6687

A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.

Methods in Approximation

Techniques for Mathematical Modelling

Author: N.D. Bellman,R.S. Roth

Publisher: Springer Science & Business Media

ISBN: 9400946007

Category: Mathematics

Page: 224

View: 9984

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Mathematical Modelling

Case Studies and Projects

Author: J. Caldwell,Douglas K.S. Ng

Publisher: Springer Science & Business Media

ISBN: 1402019939

Category: Mathematics

Page: 253

View: 9546

Over the past decade there has been an increasing demand for suitable material in the area of mathematical modelling as applied to science, engineering, business and management. Recent developments in computer technology and related software have provided the necessary tools of increasing power and sophistication which have significant implications for the use and role of mathematical modelling in the above disciplines. In the past, traditional methods have relied heavily on expensive experimentation and the building of scaled models, but now a more flexible and cost effective approach is available through greater use of mathematical modelling and computer simulation. In particular, developments in computer algebra, symbolic manipulation packages and user friendly software packages for large scale problems, all have important implications in both the teaching of mathematical modelling and, more importantly, its use in the solution of real world problems. Many textbooks have been published which cover the art and techniques of modelling as well as specific mathematical modelling techniques in specialist areas within science and business. In most of these books the mathematical material tends to be rather tailor made to fit in with a one or two semester course for teaching students at the undergraduate or postgraduate level, usually the former. This textbook is quite different in that it is intended to build on and enhance students’ modelling skills using a combination of case studies and projects.

Modelling Mathematical Methods and Scientific Computation

Author: Nicola Bellomo,Luigi Preziosi

Publisher: CRC Press

ISBN: 9780849383311

Category: Mathematics

Page: 512

View: 3258

Addressed to engineers, scientists, and applied mathematicians, this book explores the fundamental aspects of mathematical modelling in applied sciences and related mathematical and computational methods. After providing the general framework needed for mathematical modelling-definitions, classifications, general modelling procedures, and validation methods-the authors deal with the analysis of discrete models. This includes modelling methods and related mathematical methods. The analysis of models is defined in terms of ordinary differential equations. The analysis of continuous models, particularly models defined in terms of partial differential equations, follows. The authors then examine inverse type problems and stochastic modelling. Three appendices provide a concise guide to functional analysis, approximation theory, and probability, and a diskette included with the book includes ten scientific programs to introduce the reader to scientific computation at a practical level.

Mathematical Modelling for Sustainable Development

Author: Marion Hersh

Publisher: Springer Science & Business Media

ISBN: 3540312242

Category: Business & Economics

Page: 557

View: 9354

This reference offers both a basic introduction and advanced technical details of available mathematical and computing methods for modeling sustainable development, closing an exisiting gap in this field, as well as illustrating their use through case studies and examples. The methods and case studies presented here are targetted at sustainable development, although they have a wide range of other applications, including economics, medicine and control systems.

Mathematical Modelling for Economists

Author: Donald George

Publisher: Springer

ISBN: 1349192384

Category: Business & Economics

Page: 170

View: 9212

This text deals with mathematical modelling techniques of use to economists. As well as explaining certain mathematical ideas, it discusses the construction, manipulation and interpretation of mathematical models. There are exercises accompanying each chapter and solutions to some are provided.

Applied Mathematical Modeling

A Multidisciplinary Approach

Author: Douglas R. Shier,K.T. Wallenius

Publisher: CRC Press

ISBN: 9781420050042

Category: Mathematics

Page: 472

View: 1802

The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

Electromagnetism of Continuous Media

Mathematical Modelling and Applications

Author: Mauro Fabrizio,Angelo Morro

Publisher: Oxford University Press

ISBN: 9780198527008

Category: Mathematics

Page: 668

View: 978

For graduate students and researchers, this self contained text provides a carefully structured, coherent, and comprehensive treatment of the mathematical modelling in electromagnetism of continuous media. The authors provide a systematic review of known subjects along with many original results. Part I reviews basic notions and approaches in electromagnetism (Maxwell's equations, Green's functions, harmonic fields, dispersive effects) and emphasizes the physical motivation for the modelling of non-conventional materials. The frequency-dependent properties (such as conductivity, polarizability, and magnetizability), which enter wave diffraction and dispersion, are shown, and these lead to a discussion of models of materials with fading memory in the time domain. Part II develops the thermodynamics of electromagnetic and thermoelectromagnetic materials with memory and provides a systematic account of thermodynamic restrictions. Existence, uniqueness and stability problems are investigated. Also, variational formulations and wave propagation solution are established. Part III is devoted to more involved models which are motivated by the interest in materials and structures with non-conventional properties. The mathematical modelling deals with non-linearity, non-locality and hysteresis. In non-linear materials attention is focussed on the generation of harmonics and in discontinuity waves. Non-locality is examined in a general way and hence is applied to superconductivity. Hysteresis is developed for magnetism. A review of known schemes is given along with new results about the modelling of hysteresis loops. The wide application of technologies in new mechanical, electronic and biomedical systems calls for materials and structures with non-conventional properties (e.g materials with 'memory'). Of equal importance is the understanding of the physical behaviour of these materials and consequently developing mathematical modelling techniques for prediction. Includes appendices that include some properties of Bessel functions, Fourier transforms and Sobolev spaces, compact operators and eigenfunctions, differential operators in curvilinear coordinates, and finite formulation of electromagnetism.

Applied Mathematical Modelling of Engineering Problems

Author: N.V. Hritonenko,Yuri P. Yatsenko

Publisher: Springer Science & Business Media

ISBN: 1441991603

Category: Mathematics

Page: 286

View: 5969

The subject of the book is the "know-how" of applied mathematical modelling: how to construct specific models and adjust them to a new engineering environment or more precise realistic assumptions; how to analyze models for the purpose of investigating real life phenomena; and how the models can extend our knowledge about a specific engineering process. Two major sources of the book are the stock of classic models and the authors' wide experience in the field. The book provides a theoretical background to guide the development of practical models and their investigation. It considers general modelling techniques, explains basic underlying physical laws and shows how to transform them into a set of mathematical equations. The emphasis is placed on common features of the modelling process in various applications as well as on complications and generalizations of models. The book covers a variety of applications: mechanical, acoustical, physical and electrical, water transportation and contamination processes; bioengineering and population control; production systems and technical equipment renovation. Mathematical tools include partial and ordinary differential equations, difference and integral equations, the calculus of variations, optimal control, bifurcation methods, and related subjects.

Mathematical Models in Applied Mechanics

Author: Alan B. Tayler

Publisher: Oxford University Press

ISBN: 9780198515593

Category: Mathematics

Page: 280

View: 8913

Mathematical Models in Applied Mechanics is perfectly designed for final year undergraduate and graduate students. This textbook utilizes the power of mathematics in solving practical, scientific and technical problems through mathematical modeling techniques. Taken from real-life situations, the text includes twenty-one ordered problems, which gives students the ability to develop the skills necessary to create new situational models.

Mathematical Modeling in Systems Biology

An Introduction

Author: Brian P. Ingalls

Publisher: MIT Press

ISBN: 0262018888

Category: Science

Page: 408

View: 9745

Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3--8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.