Author: Gwynne Evans,Jonathan M. Blackledge,Peter Yardley

Publisher: Springer Verlag

ISBN: 9783540761259

Category: Mathematics

Page: 290

View: 7494

Skip to content
# Nothing Found

### Numerical methods for partial differential equations

The subject of partial differential equations holds an exciting place in mathematics. Inevitably, the subject falls into several areas of mathematics. At one extreme the interest lies in the existence and uniqueness of solutions, and the functional analysis of the proofs of these properties. At the other extreme lies the applied mathematical and engineering quest to find useful solutions, either analytically or numerically, to these important equations which can be used in design and construction. The book presents a clear introduction of the methods and underlying theory used in the numerical solution of partial differential equations. After revising the mathematical preliminaries, the book covers the finite difference method of parabolic or heat equations, hyperbolic or wave equations and elliptic or Laplace equations. Throughout, the emphasis is on the practical solution rather than the theoretical background, without sacrificing rigour.

### Mathematical and Numerical Methods for Partial Differential Equations

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.

### Mathematical Methods for Engineers and Scientists 3

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

### Analytic Methods for Partial Differential Equations

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

### Partielle Differentialgleichungen und numerische Methoden

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

### Solution Techniques for Elementary Partial Differential Equations, Third Edition

Solution Techniques for Elementary Partial Differential Equations, Third Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

### Mathematical Methods for Partial Differential Equations

A self study textbook about mathematical methods suitable for engineers, physicists, and scientists desiring an introduction to concepts associated with linear partial differential equations. Includes numerous worked examples, and applications.

### Numerical Methods for Partial Differential Equations

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

### Adaptive Computational Methods for Partial Differential Equations

List of participants; Elliptic equations; Parabolic equations; Hyperbolic equations.

### Numerical Methods for Elliptic and Parabolic Partial Differential Equations

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

### Numerical Methods for Partial Differential Equations

This volume is designed as an introduction to the concepts of modern numerical analysis as they apply to partial differential equations. The book contains many practical problems and their solutions, but at the same time, strives to expose the pitfalls--such as overstability, consistency requirements, and the danger of extrapolation to nonlinear problems methods used on linear problems. Numerical Methods for Partial Differential Equations, Third Edition reflects the great accomplishments that have taken place in scientific computation in the fifteen years since the Second Edition was published. This new edition is a drastic revision of the previous one, with new material on boundary elements, spectral methods, the methods of lines, and invariant methods. At the same time, the new edition retains the self-contained nature of the older version, and shares the clarity of its exposition and the integrity of its presentation. Material on finite elements and finite differences have been merged, and now constitute equal partners Additional material has been added on boundary elements, spectral methods, the method of lines, and invariant methods References have been updated, and reflect the additional material Self-contained nature of the Second Edition has been maintained Very suitable for PDE courses

### Adaptive Methods for Partial Differential Equations

"Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.

### Numerical Methods for Solving Partial Differential Equations

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.

### Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations

This IMA Volume in Mathematics and its Applications MODELING, MESH GENERATION, AND ADAPTIVE NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of the 1993 IMA Summer Program "Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations." We thank Ivo Babuska, Joseph E. Flaherty, William D. Hen shaw, John E. Hopcroft, Joseph E. Oliger, and Tayfun Tezduyar for orga nizing the workshop and editing the proceedings. We also take this oppor tunity to thank those agencies whose financial support made the summer program possible: the National Science Foundation (NSF), the Army Re search Office (ARO) the Department of Energy (DOE), the Minnesota Su percomputer Institute (MSI), and the Army High Performance Computing Research Center (AHPCRC). A vner Friedman Willard Miller, Jr. xiii PREFACE Mesh generation is one of the most time consuming aspects of com putational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh gen eration must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and so lution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions.

### Methods for Constructing Exact Solutions of Partial Differential Equations

Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.

### Splitting Methods for Partial Differential Equations with Rough Solutions

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tacking. The theory is illustrated by numerous examples. There is a dedicated web page that provides MATLAB codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

### Fourier Series and Numerical Methods for Partial Differential Equations

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

### Computational Methods for PDE in Mechanics

- An application-oriented introduction to computational numerical methods for PDE - Complete with numerous exercise sets and solutions - Includes Windows programs in C++ language

### Reduced Basis Methods for Partial Differential Equations

This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

### Hilbert Space Methods in Partial Differential Equations

This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

Full PDF eBook Download Free

Author: Gwynne Evans,Jonathan M. Blackledge,Peter Yardley

Publisher: Springer Verlag

ISBN: 9783540761259

Category: Mathematics

Page: 290

View: 7494

*Applications for Engineering Sciences*

Author: Joël Chaskalovic

Publisher: Springer

ISBN: 3319035630

Category: Mathematics

Page: 358

View: 8454

*Fourier Analysis, Partial Differential Equations and Variational Methods*

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

ISBN: 3540446958

Category: Science

Page: 440

View: 1764

Author: G. Evans,J. Blackledge,P. Yardley

Publisher: Springer Science & Business Media

ISBN: 1447103793

Category: Mathematics

Page: 316

View: 6063

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 4538

Author: Christian Constanda

Publisher: CRC Press

ISBN: 1498704964

Category: Mathematics

Page: 358

View: 9772

Author: J. H. Heinbockel

Publisher: Trafford on Demand Pub

ISBN: 9781412003803

Category: Mathematics

Page: 576

View: 6957

Author: G. Evans,J. Blackledge,P. Yardley

Publisher: Springer Science & Business Media

ISBN: 1447103777

Category: Mathematics

Page: 290

View: 8622

Author: Ivo Babushka,Jagdish Chandra,Joseph E. Flaherty

Publisher: SIAM

ISBN: 9780898711912

Category: Mathematics

Page: 251

View: 9619

Author: Peter Knabner,Lutz Angerman

Publisher: Springer Science & Business Media

ISBN: 0387217622

Category: Mathematics

Page: 426

View: 1051

Author: William F. Ames

Publisher: Academic Press

ISBN: 0080571301

Category: Mathematics

Page: 451

View: 3529

Author: Ivo Babushka,Jagdish Chandra,Joseph E. Flaherty

Publisher: SIAM

ISBN: 9780898712421

Category: Mathematics

Page: 265

View: 1651

*A Comprehensive Introduction for Scientists and Engineers*

Author: George F. Pinder

Publisher: John Wiley & Sons

ISBN: 1119316111

Category: Mathematics

Page: 320

View: 972

Author: Ivo Babuska

Publisher: Springer Science & Business Media

ISBN: 9780387945422

Category: Mathematics

Page: 450

View: 7122

*Mathematical and Analytical Techniques with Applications to Engineering*

Author: Sergey V. Meleshko

Publisher: Springer Science & Business Media

ISBN: 0387252657

Category: Mathematics

Page: 352

View: 8427

*Analysis and MATLAB Programs*

Author: Helge Holden

Publisher: European Mathematical Society

ISBN: 9783037190784

Category: Mathematics

Page: 226

View: 5658

Author: Richard Bernatz

Publisher: John Wiley & Sons

ISBN: 9780470651377

Category: Mathematics

Page: 336

View: 9140

Author: Berardino D'Acunto

Publisher: World Scientific

ISBN: 9789812560377

Category: Science

Page: 278

View: 3114

*An Introduction*

Author: Alfio Quarteroni,Andrea Manzoni,Federico Negri

Publisher: Springer

ISBN: 3319154311

Category: Mathematics

Page: 296

View: 7292

Author: Ralph E. Showalter

Publisher: Courier Corporation

ISBN: 0486135799

Category: Mathematics

Page: 224

View: 5737