Making Sense of Data I

A Practical Guide to Exploratory Data Analysis and Data Mining

Author: Glenn J. Myatt,Wayne P. Johnson

Publisher: John Wiley & Sons

ISBN: 1118422104

Category: Mathematics

Page: 248

View: 7563

Praise for the First Edition “...a well-written book on data analysis and data mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practical statistics and data analysis...” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.

Making Sense of Data II

A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications

Author: Glenn J. Myatt,Wayne P. Johnson

Publisher: John Wiley & Sons

ISBN: 9780470417393

Category: Mathematics

Page: 416

View: 5703

A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences. Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis: Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces. Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed. Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes. Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios. Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series (www.makingsenseofdata.com) provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online. With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.

Making Sense of Data III

A Practical Guide to Designing Interactive Data Visualizations

Author: Glenn J. Myatt,Wayne P. Johnson

Publisher: John Wiley & Sons

ISBN: 1118121600

Category: Mathematics

Page: 416

View: 5260

Focuses on insights, approaches, and techniques that are essential to designing interactive graphics and visualizations Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations explores a diverse range of disciplines to explain how meaning from graphical representations is extracted. Additionally, the book describes the best approach for designing and implementing interactive graphics and visualizations that play a central role in data exploration and decision-support systems. Beginning with an introduction to visual perception, Making Sense of Data III features a brief history on the use of visualization in data exploration and an outline of the design process. Subsequent chapters explore the following key areas: Cognitive and Visual Systems describes how various drawings, maps, and diagrams known as external representations are understood and used to extend the mind's capabilities Graphics Representations introduces semiotic theory and discusses the seminal work of cartographer Jacques Bertin and the grammar of graphics as developed by Leland Wilkinson Designing Visual Interactions discusses the four stages of design process—analysis, design, prototyping, and evaluation—and covers the important principles and strategies for designing visual interfaces, information visualizations, and data graphics Hands-on: Creative Interactive Visualizations with Protovis provides an in-depth explanation of the capabilities of the Protovis toolkit and leads readers through the creation of a series of visualizations and graphics The final chapter includes step-by-step examples that illustrate the implementation of the discussed methods, and a series of exercises are provided to assist in learning the Protovis language. A related website features the source code for the presented software as well as examples and solutions for select exercises. Featuring research in psychology, vision science, statistics, and interaction design, Making Sense of Data III is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for computational statisticians, software engineers, researchers, and professionals of any discipline who would like to understand how the mind processes graphical representations.

Making Sense of Data Set

Author: Glenn J. Myatt

Publisher: Wiley

ISBN: 9781118395141

Category: Mathematics

Page: 991

View: 599

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining by Glenn J. Myatt (978-0-470-07471-8), Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications by Glenn J. Myatt and Wayne P. Johnson (978-0-470-22280-5), and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations by Glenn J. Myatt and Wayne P. Johnson (978-0-470-53649-0)

Making Data Visual

A Practical Guide to Using Visualization for Insight

Author: Danyel Fisher,Miriah Meyer

Publisher: "O'Reilly Media, Inc."

ISBN: 1491928441

Category: Computers

Page: 168

View: 5625

You have a mound of data front of you and a suite of computation tools at your disposal. Which parts of the data actually matter? Where is the insight hiding? If you’re a data scientist trying to navigate the murky space between data and insight, this practical book shows you how to make sense of your data through high-level questions, well-defined data analysis tasks, and visualizations to clarify understanding and gain insights along the way. When incorporated into the process early and often, iterative visualization can help you refine the questions you ask of your data. Authors Danyel Fisher and Miriah Meyer provide detailed case studies that demonstrate how this process can evolve in the real world. You’ll learn: The data counseling process for moving from general to more precise questions about your data, and arriving at a working visualization The role that visual representations play in data discovery Common visualization types by the tasks they fulfill and the data they use Visualization techniques that use multiple views and interaction to support analysis of large, complex data sets

Discovering Knowledge in Data

An Introduction to Data Mining

Author: Daniel T. Larose

Publisher: John Wiley & Sons

ISBN: 1118873572

Category: Computers

Page: 336

View: 518

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

Principles of Data Science

Author: Sinan Ozdemir

Publisher: Packt Publishing Ltd

ISBN: 1785888927

Category: Computers

Page: 388

View: 4926

Learn the techniques and math you need to start making sense of your data About This Book Enhance your knowledge of coding with data science theory for practical insight into data science and analysis More than just a math class, learn how to perform real-world data science tasks with R and Python Create actionable insights and transform raw data into tangible value Who This Book Is For You should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you. What You Will Learn Get to know the five most important steps of data science Use your data intelligently and learn how to handle it with care Bridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results Build and evaluate baseline machine learning models Explore the most effective metrics to determine the success of your machine learning models Create data visualizations that communicate actionable insights Read and apply machine learning concepts to your problems and make actual predictions In Detail Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means. Style and approach This is an easy-to-understand and accessible tutorial. It is a step-by-step guide with use cases, examples, and illustrations to get you well-versed with the concepts of data science. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world.

A Practical Guide to Data Mining for Business and Industry

Author: Andrea Ahlemeyer-Stubbe,Shirley Coleman

Publisher: John Wiley & Sons

ISBN: 1118763378

Category: Mathematics

Page: 328

View: 1658

Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

JMP Start Statistics

A Guide to Statistics and Data Analysis Using JMP, Sixth Edition

Author: John Sall,Mia L. Stephens,Ann Lehman,Sheila Loring

Publisher: SAS Institute

ISBN: 1629608769

Category: Computers

Page: 660

View: 5228

This book provides hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. Updated for JMP 13, JMP Start Statistics, Sixth Edition includes many new features, including: The redesigned Formula Editor. New and improved ways to create formulas in JMP directly from the data table or dialogs. Interface updates, including improved menu layout. Updates and enhancements in many analysis platforms. New ways to get data into JMP and to save and share JMP results. Many new features that make it easier to use JMP.

Getting Started with Data Science

Making Sense of Data with Analytics

Author: Murtaza Haider

Publisher: IBM Press

ISBN: 0133991237

Category: Business & Economics

Page: 400

View: 8702

Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.

The Analytics Lifecycle Toolkit

A Practical Guide for an Effective Analytics Capability

Author: Gregory S. Nelson

Publisher: John Wiley & Sons

ISBN: 1119425069

Category: Business & Economics

Page: 464

View: 7788

An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 8996

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Scientific Data Mining

A Practical Perspective

Author: Chandrika Kamath

Publisher: SIAM

ISBN: 0898716756

Category: Mathematics

Page: 286

View: 2758

Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.

Data Analysis Using SQL and Excel

Author: Gordon S. Linoff

Publisher: John Wiley & Sons

ISBN: 1119021456

Category: Computers

Page: 792

View: 7206

A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the "where" and "why" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. Understand core analytic techniques that work with SQL and Excel Ensure your analytic approach gets you the results you need Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.

MASTERING DATA MINING: THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT

Author: Michael J. A. Berry,Gordon S. Linoff

Publisher: N.A

ISBN: 9788126518258

Category:

Page: 512

View: 631

Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.

Introduction to Stochastic Processes

Author: Erhan Cinlar

Publisher: Courier Corporation

ISBN: 0486276325

Category: Mathematics

Page: 416

View: 5656

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Data Mining and Statistics for Decision Making

Author: Stéphane Tufféry

Publisher: John Wiley & Sons

ISBN: 9780470979280

Category: Computers

Page: 716

View: 8751

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

Practical Data Science with R

Author: Nina Zumel,John Mount

Publisher: Manning Publications

ISBN: 9781617291562

Category: Computers

Page: 416

View: 329

Summary Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics. Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels. This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed. What's Inside Data science for the business professional Statistical analysis using the R language Project lifecycle, from planning to delivery Numerous instantly familiar use cases Keys to effective data presentations About the Authors Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. Table of Contents PART 1 INTRODUCTION TO DATA SCIENCE The data science process Loading data into R Exploring data Managing data PART 2 MODELING METHODS Choosing and evaluating models Memorization methods Linear and logistic regression Unsupervised methods Exploring advanced methods PART 3 DELIVERING RESULTS Documentation and deployment Producing effective presentations

Heuristics in Analytics

A Practical Perspective of What Influences Our Analytical World

Author: Carlos Andre Reis Pinheiro,Fiona McNeill

Publisher: John Wiley & Sons

ISBN: 1118416740

Category: Business & Economics

Page: 256

View: 2388

Employ heuristic adjustments for truly accurate analysis Heuristics in Analytics presents an approach to analysis that accounts for the randomness of business and the competitive marketplace, creating a model that more accurately reflects the scenario at hand. With an emphasis on the importance of proper analytical tools, the book describes the analytical process from exploratory analysis through model developments, to deployments and possible outcomes. Beginning with an introduction to heuristic concepts, readers will find heuristics applied to statistics and probability, mathematics, stochastic, and artificial intelligence models, ending with the knowledge applications that solve business problems. Case studies illustrate the everyday application and implication of the techniques presented, while the heuristic approach is integrated into analytical modeling, graph analysis, text analytics, and more. Robust analytics has become crucial in the corporate environment, and randomness plays an enormous role in business and the competitive marketplace. Failing to account for randomness can steer a model in an entirely wrong direction, negatively affecting the final outcome and potentially devastating the bottom line. Heuristics in Analytics describes how the heuristic characteristics of analysis can be overcome with problem design, math and statistics, helping readers to: Realize just how random the world is, and how unplanned events can affect analysis Integrate heuristic and analytical approaches to modeling and problem solving Discover how graph analysis is applied in real-world scenarios around the globe Apply analytical knowledge to customer behavior, insolvency prevention, fraud detection, and more Understand how text analytics can be applied to increase the business knowledge Every single factor, no matter how large or how small, must be taken into account when modeling a scenario or event—even the unknowns. The presence or absence of even a single detail can dramatically alter eventual outcomes. From raw data to final report, Heuristics in Analytics contains the information analysts need to improve accuracy, and ultimately, predictive, and descriptive power.