Lie Groups

An Introduction Through Linear Groups

Author: Wulf Rossmann

Publisher: Oxford University Press on Demand

ISBN: 9780199202515

Category: Mathematics

Page: 265

View: 7225

Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of thetheory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

Matrizen und Lie-Gruppen

Eine geometrische Einführung

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834899054

Category: Mathematics

Page: 224

View: 5637

Dies ist eine Einführung in die mathematische Theorie der Lie-Gruppen. Etwa die erste Hälfte des Buches handelt von Matrizengruppen. Abstrakte Konzepte (auch Mannigfaltigkeiten) werden erst in der zweiten Hälfte vorgestellt. Zur Motivation und zum besseren historischen Verständnis sind kurze Texte klassischer Autoren (wie Sophus Lie selbst) mit eingeflochten. Außerdem gibt es zur Anschaulichkeit ein eigenes Kapitel, das ausschließlich von diversen geometrischen Transformationsgruppen handelt. Dabei wird konkret auf die klassischen Geometrien eingegangen. Als Vorkenntnisse werden nur die üblichen Studieninhalte des ersten Jahres im Mathematik- oder Physik-Studium vorausgesetzt, soweit sie die Analysis und die Lineare Algebra betreffen. Das Buch beginnt damit auf sehr elementarem Niveau. Alles andere wird nicht nur eingeführt, sondern alle Sätze werden auch bewiesen. Auf Verständlichkeit wird großen Wert gelegt. Daher eignet sich das Buch insbesondere als Begleittext zu Lehrveranstaltungen (auch Proseminaren) in den Bachelor-Studiengängen, aber auch im Lehramtsstudium und zum Selbststudium. Das Buch enthält zahlreiche Übungsaufgaben mit Lösungshinweisen oder vollständiger Lösung.

Introduction To The Geometrical Analysis Of Vector Fields, An: With Applications To Maximum Principles And Lie Groups

Author: Biagi Stefano,Bonfiglioli Andrea

Publisher: World Scientific

ISBN: 9813276630

Category: Mathematics

Page: 452

View: 747

This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

Lie Groups, Lie Algebras, and Representations

An Elementary Introduction

Author: Brian Hall

Publisher: Springer

ISBN: 3319134671

Category: Mathematics

Page: 453

View: 3351

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Compact Lie Groups

Author: Mark R. Sepanski

Publisher: Springer Science & Business Media

ISBN: 0387491589

Category: Mathematics

Page: 201

View: 6324

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: Oxford University Press

ISBN: 019967616X

Category: Mathematics

Page: 320

View: 1622

An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Stochastic Analysis and Diffusion Processes

Author: Gopinath Kallianpur,P Sundar

Publisher: Oxford University Press

ISBN: 0199657076

Category: Mathematics

Page: 352

View: 1431

Beginning with the concept of random processes and Brownian motion and building on the theory and research directions in a self-contained manner, this book provides an introduction to stochastic analysis for graduate students, researchers and applied scientists interested in stochastic processes and their applications.

Books in Print

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 2097

Books in print is the major source of information on books currently published and in print in the United States. The database provides the record of forthcoming books, books in-print, and books out-of-print.

An Introduction to Quantum Theory

Author: Keith Hannabuss

Publisher: Clarendon Press

ISBN: 9780191588730

Category: Science

Page: 394

View: 8402

This book provides an introduction to quantum theory primarily for students of mathematics. Although the approach is mainly traditional the discussion exploits ideas of linear algebra, and points out some of the mathematical subtleties of the theory. Amongst the less traditional topics are Bell's inequalities, coherent and squeezed states, and introductions to group representation theory. Later chapters discuss relativistic wave equations and elementary particle symmetries from a group theoretical standpoint rather than the customary Lie algebraic approach. This book is intended for the later years of an undergraduate course or for graduates. It assumes a knowledge of basic linear algebra and elementary group theory, though for convenience these are also summarized in an appendix.

Algebraic Models in Geometry

Author: Yves Félix,John Oprea,Daniel Tanré

Publisher: Oxford University Press on Demand

ISBN: 9780199206513

Category: Mathematics

Page: 460

View: 3867

In the past century, different branches of mathematics have become more widely separated. Yet, there is an essential unity to mathematics which still springs up in fascinating ways to solve interdisciplinary problems. This text provides a bridge between the subjects of algebraic topology, including differential topology, and geometry. It is a survey book dedicated to a large audience of researchers and graduate students in these areas. Containing a generalintroduction to the algebraic theory of rational homotopy and giving concrete applications of algebraic models to the study of geometrical problems, mathematicians in many areas will find subjects that are of interest to them in the book.

Partial differential equations in general relativity

Author: Alan D. Rendall

Publisher: Oxford University Press, USA

ISBN: 9780199215409

Category: Mathematics

Page: 279

View: 3068

A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity. It explains the basics of the theory of partial differential equations in a form accessible to physicists and the basics of general relativity in a form accessible to mathematicians. In recent years the theory of partial differential equations has come to play an ever more important role in research on general relativity. This is partly due to the growth of the field of numerical relativity, stimulated in turn by work on gravitational wave detection, but also due to an increased interest in general relativity among pure mathematicians working in the areas of partial differential equations and Riemannian geometry, who have realized the exceptional richness of the interactions between geometry and analysis which arise. This book provides the background for those wishing to learn about these topics. It treats key themes in general relativity including matter models and symmetry classes and gives an introduction to relevant aspects of the most important classes of partial differential equations, including ordinary differential equations, and material on functional analysis. These elements are brought together to discuss a variety of important examples in the field of mathematical relativity, including asymptotically flat spacetimes, which are used to describe isolated systems, and spatially compact spacetimes, which are of importance in cosmology.

Introduction to Lie Algebras

Author: K. Erdmann,Mark J. Wildon

Publisher: Springer Science & Business Media

ISBN: 1846284902

Category: Mathematics

Page: 251

View: 2061

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.