Introduction to Numerical Methods in Differential Equations

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

ISBN: 0387681213

Category: Mathematics

Page: 239

View: 7138

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 8779

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson,Weimin Han,David E. Stewart

Publisher: John Wiley & Sons

ISBN: 1118164520

Category: Mathematics

Page: 272

View: 7097

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Differential Equations and Their Applications

An Introduction to Applied Mathematics

Author: Martin Braun

Publisher: Springer Science & Business Media

ISBN: 9780387978949

Category: Mathematics

Page: 578

View: 3440

Used in undergraduate classrooms across the USA, this is a clearly written, rigorous introduction to differential equations and their applications. Fully understandable to students who have had one year of calculus, this book distinguishes itself from other differential equations texts through its engaging application of the subject matter to interesting scenarios. This fourth edition incorporates earlier introductory material on bifurcation theory and adds a new chapter on Sturm-Liouville boundary value problems. Computer programs in C, Pascal, and Fortran are presented throughout the text to show readers how to apply differential equations towards quantitative problems.

Introduction to Numerical Analysis

Author: J. Stoer,R. Bulirsch

Publisher: Springer Science & Business Media

ISBN: 038721738X

Category: Mathematics

Page: 746

View: 5090

New edition of a well-known classic in the field; Previous edition sold over 6000 copies worldwide; Fully-worked examples; Many carefully selected problems

Numerical Partial Differential Equations: Finite Difference Methods

Author: J.W. Thomas

Publisher: Springer Science & Business Media

ISBN: 1489972781

Category: Mathematics

Page: 437

View: 8659

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

Numerical Analysis in Modern Scientific Computing

An Introduction

Author: Andreas Hohmann,Peter Deuflhard

Publisher: Springer Science & Business Media

ISBN: 0387215840

Category: Mathematics

Page: 340

View: 4408

This book introduces the main topics of modern numerical analysis: sequence of linear equations, error analysis, least squares, nonlinear systems, symmetric eigenvalue problems, three-term recursions, interpolation and approximation, large systems and numerical integrations. The presentation draws on geometrical intuition wherever appropriate and is supported by a large number of illustrations, exercises, and examples.

Scientific Computing and Differential Equations

An Introduction to Numerical Methods

Author: Gene H. Golub,James M. Ortega

Publisher: Elsevier

ISBN: 0080516696

Category: Mathematics

Page: 344

View: 1093

Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level

Numerical Methods for Ordinary Differential Equations

Author: J. C. Butcher

Publisher: John Wiley & Sons

ISBN: 1119121507

Category: Mathematics

Page: 538

View: 383

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. Key features: ?? Presents a comprehensive and detailed study of the subject ?? Covers both practical and theoretical aspects ?? Includes widely accessible topics along with sophisticated and advanced details ?? Offers a balance between traditional aspects and modern developments This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

An Introduction to Ordinary Differential Equations

Author: James C. Robinson

Publisher: Cambridge University Press

ISBN: 9780521533911

Category: Mathematics

Page: 399

View: 1790

This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.

Numerical Methods for Solving Partial Differential Equations

A Comprehensive Introduction for Scientists and Engineers

Author: George F. Pinder

Publisher: John Wiley & Sons

ISBN: 1119316111

Category: Mathematics

Page: 320

View: 6874

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.

Introduction to Partial Differential Equations

A Computational Approach

Author: Aslak Tveito,Ragnar Winther

Publisher: Springer Science & Business Media

ISBN: 0387227733

Category: Mathematics

Page: 392

View: 5886

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.

Introduction to Scientific Computing and Data Analysis

Author: Mark H. Holmes

Publisher: Springer

ISBN: 3319302566

Category: Computers

Page: 497

View: 4696

This textbook provides and introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The MATLAB codes used to produce most of the figures and data tables in the text are available on the author’s website and SpringerLink.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642973418

Category: Mathematics

Page: 596

View: 8696

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

A First Course in Ordinary Differential Equations

Analytical and Numerical Methods

Author: Martin Hermann,Masoud Saravi

Publisher: Springer Science & Business

ISBN: 8132218353

Category: Mathematics

Page: 288

View: 5016

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Introduction to Perturbation Methods

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

ISBN: 1461253470

Category: Mathematics

Page: 356

View: 6085

This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.

Scientific Computing with Ordinary Differential Equations

Author: Peter Deuflhard,Folkmar Bornemann

Publisher: Springer Science & Business Media

ISBN: 9780387954622

Category: Mathematics

Page: 486

View: 6140

Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area

Numerical Methods for Fluid Dynamics

With Applications to Geophysics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

ISBN: 9781441964120

Category: Mathematics

Page: 516

View: 417

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Finite Volume Methods for Hyperbolic Problems

Author: Randall J. LeVeque

Publisher: Cambridge University Press

ISBN: 1139434187

Category: Mathematics

Page: N.A

View: 2348

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.