*An Introduction to Mathematical Thought Processes*

Author: Daniel Solow

Publisher: John Wiley & Sons

ISBN: 9781118164020

Category: Mathematics

Page: 336

View: 415

Skip to content
# Nothing Found

### How to Read and Do Proofs

The inclusion in practically every chapter of new material on how to read and understand proofs as they are typically presented in class lectures, textbooks, and other mathematical literature. The goal is to provide sufficient examples (and exercises) to give students the ability to learn mathematics on their own.

### How to Read and Do Proofs

When engineers, computer scientists, and economists need to learn how to read, think about, and create proofs, they turn to Solow. In order to make the material more relevant, the exercises in each chapter have been revised and expanded. New and more complete discussions are included on how to use a previously-proved proposition in both the forward and backward processes. The fifth edition also presents new, self-contained chapters on uniqueness, induction, either/or, and max/min methods. Several final examples of how to read and do proofs are included in the final chapter to reinforce the reader’s knowledge of the various proof techniques.

### How to read and do proofs

An easy-to-use guide that shows how to read, understand, and do proofs. Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

### How to Read and Do Proofs: An Introduction to Mathematical Thought Processes, 6th Edition

This text makes a great supplement and provides a systematic approach for teaching undergraduate and graduate students how to read, understand, think about, and do proofs. The approach is to categorize, identify, and explain (at the student's level) the various techniques that are used repeatedly in all proofs, regardless of the subject in which the proofs arise. How to Read and Do Proofs also explains when each technique is likely to be used, based on certain key words that appear in the problem under consideration. Doing so enables students to choose a technique consciously, based on the form of the problem.

### Journey into Mathematics

This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.

### How to Prove It

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

### Mathematical Reasoning

Mathematical Reasoning: Writing and Proof is a text for the ?rst college mathematics course that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics. The primary goals of the text are to help students: Develop logical thinking skills and to develop the ability to think more abstractly in a proof oriented setting; develop the ability to construct and write mathematical proofs using standard methods of mathematical proof including direct proofs, proof by contradiction, mathematical induction, case analysis, and counterexamples; develop the ability to read and understand written mathematical proofs; develop talents for creative thinking and problem solving; improve their quality of communication in mathematics. This includes improving writing techniques, reading comprehension, and oral communication in mathematics; better understand the nature of mathematics and its language. Another important goal of this text is to provide students with material that will be needed for their further study of mathematics. Important features of the book include: Emphasis on writing in mathematics; instruction in the process of constructing proofs; emphasis on active learning.There are no changes in content between Version 2.0 and previous versions of the book. The only change is that the appendix with answers and hints for selected exercises now contains solutions and hints for more exercises.

### Exploring the Infinite

Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. ? Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets

### Proof, Logic, and Conjecture

This text is designed to teach students how to read and write proofs in mathematics and to acquaint them with how mathematicians investigate problems and formulate conjecture.

### Introduction to Real Analysis

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

### Theoremus

This concise textbook will teach mathematics students the art of proving theorems. Using a simple approach, it will provide them the mechanics to solve challenging proof exercises. Students are first taught to be sensitive to fallacious claims so they could form valid assertions. The book shows the proper use of logic and its deduction rules. It is an effective tool for improving students' skills in formulating sound mathematical arguments. What is more is that the student can get all of these in one sitting.

### Fundamentals of Mathematics

An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.

### Principia Mathematica

### Mathematical Proofs

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.

### The Nuts and Bolts of Proofs

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics

### Introduction to Mathematical Structures and Proofs

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

### Introduction to Mathematical Proofs, Second Edition

Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis.

### An Introduction to Mathematical Reasoning

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

### In Code

Originally published in England and cowritten with her father, "In Code" is "a wonderfully moving story about the thrill of the mathematical chase" ("Nature") and "a paean to intellectual adventure" ("Times Educational Supplement"). A memoir in mathematics, it is all about how a girl next door became an award-winning mathematician. photo insert.

### Understanding Mathematical Proof

The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

Full PDF eBook Download Free

*An Introduction to Mathematical Thought Processes*

Author: Daniel Solow

Publisher: John Wiley & Sons

ISBN: 9781118164020

Category: Mathematics

Page: 336

View: 415

*An Introduction to Mathematical Thought Processes*

Author: Daniel Solow

Publisher: Wiley

ISBN: 9780470392164

Category: Mathematics

Page: 320

View: 6551

*an introduction to mathematical thought processes*

Author: Daniel Solow

Publisher: Wiley

ISBN: 9780471680581

Category: Mathematics

Page: 269

View: 3008

*Sixth Edition*

Author: Daniel Solow

Publisher: Wiley Global Education

ISBN: 1118857879

Category: Mathematics

Page: 319

View: 4613

*An Introduction to Proofs*

Author: Joseph J. Rotman

Publisher: Courier Corporation

ISBN: 0486151689

Category: Mathematics

Page: 256

View: 8795

*A Structured Approach*

Author: Daniel J. Velleman

Publisher: Cambridge University Press

ISBN: 1139450972

Category: Mathematics

Page: N.A

View: 1833

*Writing and Proof Version 2.0*

Author: Ted Sundstrom

Publisher: N.A

ISBN: 9781500143411

Category:

Page: 608

View: 5515

*An Introduction to Proof and Analysis*

Author: Jennifer Brooks

Publisher: CRC Press

ISBN: 1498704506

Category: Mathematics

Page: 300

View: 9694

*The Mathematician's Toolbox*

Author: Robert S. Wolf

Publisher: St. Martin's Press

ISBN: 9780716730507

Category: Mathematics

Page: 421

View: 1300

Author: Michael J. Schramm

Publisher: Courier Corporation

ISBN: 0486131920

Category: Mathematics

Page: 384

View: 8627

*A Student's Guide to Math Proofs*

Author: L. P. Cruz

Publisher: CreateSpace

ISBN: 9781505921458

Category: Mathematics

Page: 82

View: 8745

*An Introduction to Proofs, Logic, Sets, and Numbers*

Author: Bernd S. W. Schröder

Publisher: Wiley

ISBN: 9780470551387

Category: Mathematics

Page: 338

View: 2936

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: N.A

View: 1163

*A Transition to Advanced Mathematics*

Author: Gary Chartrand,Albert D. Polimeni,Ping Zhang

Publisher: Pearson Higher Ed

ISBN: 0321892577

Category: Education

Page: 416

View: 6925

*An Introduction to Mathematical Proofs*

Author: Antonella Cupillari

Publisher: Academic Press

ISBN: 0123822181

Category: Mathematics

Page: 296

View: 6631

Author: Larry J. Gerstein

Publisher: Springer Science & Business Media

ISBN: 1461442656

Category: Mathematics

Page: 401

View: 605

*A Transition to Advanced Mathematics, Second Edition*

Author: Charles Roberts

Publisher: CRC Press

ISBN: 1482246880

Category: Mathematics

Page: 414

View: 2716

Author: Peter J. Eccles

Publisher: Cambridge University Press

ISBN: 9780521597180

Category: Mathematics

Page: 350

View: 3994

*A Mathematical Journey*

Author: Sarah Flannery

Publisher: Algonquin Books

ISBN: 9781565123779

Category: Biography & Autobiography

Page: 341

View: 5596

Author: John Taylor,Rowan Garnier

Publisher: CRC Press

ISBN: 1466514914

Category: Mathematics

Page: 414

View: 9816