Inference in Hidden Markov Models

Author: Olivier Cappé,Eric Moulines,Tobias Ryden

Publisher: Springer Science & Business Media

ISBN: 0387289828

Category: Mathematics

Page: 653

View: 2604

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Hidden Markov Models for Time Series

An Introduction Using R

Author: Walter Zucchini,Iain L. MacDonald

Publisher: CRC Press

ISBN: 9781420010893

Category: Mathematics

Page: 288

View: 6884

Reveals How HMMs Can Be Used as General-Purpose Time Series Models Implements all methods in R Hidden Markov Models for Time Series: An Introduction Using R applies hidden Markov models (HMMs) to a wide range of time series types, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out computations for parameter estimation, model selection and checking, decoding, and forecasting. Illustrates the methodology in action After presenting the simple Poisson HMM, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference. Through examples and applications, the authors describe how to extend and generalize the basic model so it can be applied in a rich variety of situations. They also provide R code for some of the examples, enabling the use of the codes in similar applications. Effectively interpret data using HMMs This book illustrates the wonderful flexibility of HMMs as general-purpose models for time series data. It provides a broad understanding of the models and their uses.

Hidden Markov Models

Estimation and Control

Author: Robert J Elliott,Lakhdar Aggoun,John B. Moore

Publisher: Springer Science & Business Media

ISBN: 0387848541

Category: Science

Page: 382

View: 1188

As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.

Hidden Markov Models

Applications to Financial Economics

Author: Ramaprasad Bhar,Shigeyuki Hamori

Publisher: Springer Science & Business Media

ISBN: 1402079400

Category: Business & Economics

Page: 162

View: 4322

Markov chains have increasingly become useful way of capturing stochastic nature of many economic and financial variables. Although the hidden Markov processes have been widely employed for some time in many engineering applications e.g. speech recognition, its effectiveness has now been recognized in areas of social science research as well. The main aim of Hidden Markov Models: Applications to Financial Economics is to make such techniques available to more researchers in financial economics. As such we only cover the necessary theoretical aspects in each chapter while focusing on real life applications using contemporary data mainly from OECD group of countries. The underlying assumption here is that the researchers in financial economics would be familiar with such application although empirical techniques would be more traditional econometrics. Keeping the application level in a more familiar level, we focus on the methodology based on hidden Markov processes. This will, we believe, help the reader to develop more in-depth understanding of the modeling issues thereby benefiting their future research.

Image Segmentation and Compression Using Hidden Markov Models

Author: Jia Li,Robert M. Gray

Publisher: Springer Science & Business Media

ISBN: 1461544971

Category: Computers

Page: 141

View: 7352

In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book. Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors. Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally. The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization. Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling.

Hidden Markov Models in Finance

Author: Rogemar S. Mamon,Robert J Elliott

Publisher: Springer Science & Business Media

ISBN: 0387711635

Category: Business & Economics

Page: 186

View: 9645

A number of methodologies have been employed to provide decision making solutions globalized markets. Hidden Markov Models in Finance offers the first systematic application of these methods to specialized financial problems: option pricing, credit risk modeling, volatility estimation and more. The book provides tools for sorting through turbulence, volatility, emotion, chaotic events – the random "noise" of financial markets – to analyze core components.

Handbook of Hidden Markov Models in Bioinformatics

Author: Martin Gollery

Publisher: CRC Press

ISBN: 1420011804

Category: Science

Page: 176

View: 3571

Demonstrating that many useful resources, such as databases, can benefit most bioinformatics projects, the Handbook of Hidden Markov Models in Bioinformatics focuses on how to choose and use various methods and programs available for hidden Markov models (HMMs). The book begins with discussions on key HMM and related profile methods, including the HMMER package, the sequence analysis method (SAM), and the PSI-BLAST algorithm. It then provides detailed information about various types of publicly available HMM databases, such as Pfam, PANTHER, COG, and metaSHARK. After outlining ways to develop and use an automated bioinformatics workflow, the author describes how to make custom HMM databases using HMMER, SAM, and PSI-BLAST. He also helps you select the right program to speed up searches. The final chapter explores several applications of HMM methods, including predictions of subcellular localization, posttranslational modification, and binding site. By learning how to effectively use the databases and methods presented in this handbook, you will be able to efficiently identify features of biological interest in your data.

Hidden Markov Models

Applications in Computer Vision

Author: Horst Bunke,Terry Caelli

Publisher: World Scientific

ISBN: 9814491470

Category: Computers

Page: 244

View: 3946

Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval. This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001). Contents: Introduction: A Simple Complex in Artificial Intelligence and Machine Learning (B H Juang)An Introduction to Hidden Markov Models and Bayesian Networks (Z Chahramani)Multi-Lingual Machine Printed OCR (P Natarajan et al.)Using a Statistical Language Model to Improve the Performance of an HMM-Based Cursive Handwriting Recognition System (U-V Marti & H Bunke)A 2-D HMM Method for Offline Handwritten Character Recognition (H-S Park et al.)Data-Driven Design of HMM Topology for Online Handwriting Recognition (J J Lee et al.)Hidden Markov Models for Modeling and Recognizing Gesture Under Variation (A D Wilson & A F Bobick)Sentence Lipreading Using Hidden Markov Model with Integrated Grammar (K Yu et al.)Tracking and Surveillance in Wide-Area Spatial Environments Using the Abstract Hidden Markov Model (H H Bui et al.)Shape Tracking and Production Using Hidden Markov Models (T Caelli et al.)An Integrated Approach to Shape and Color-Based Image Retrieval of Rotated Objects Using Hidden Markov Models (S Müller et al.) Readership: Graduate students of computer science, electrical engineering and related fields, as well as researchers at academic and industrial institutions. Keywords:Hidden Markov Models;Gesture Recognitoin;Bayesian Networks;Optical Character Recognition;Handwriting Character Recognition;Cartography;Shape Extraction;Image Feature Extraction.

Markov Models for Pattern Recognition

From Theory to Applications

Author: Gernot A. Fink

Publisher: Springer Science & Business Media

ISBN: 1447163087

Category: Computers

Page: 276

View: 731

This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.

Hidden Markov Models

Methods and Protocols

Author: David R. Westhead,M. S. Vijayabaskar

Publisher: Humana Press

ISBN: 9781493982929

Category: Science

Page: 221

View: 1313

This volume aims to provide a new perspective on the broader usage of Hidden Markov Models (HMMs) in biology. Hidden Markov Models: Methods and Protocols guides readers through chapters on biological systems; ranging from single biomolecule, cellular level, and to organism level and the use of HMMs in unravelling the complex mechanisms that govern these complex systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Hidden Markov Models: Methods and Protocols aims to demonstrate the impact of HMM in biology and inspire new research.