Handbook of Nanophysics

7-Volume Set

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781420075380

Category: Science

Page: 5670

View: 5099

Breakthroughs in nanotechnology require a firm grounding in the principles of nanophysics. Providing the framework to achieve these advances, Handbook of Nanophysics is the first comprehensive reference to cover both fundamental and applied aspects of physics at the nanoscale. Pioneering scientists from preeminent academic institutions, R&D companies, and research laboratories pave the way for new innovations in nanotechnology. Explore the frontiers of nanoscience This seven-volume set offers a sound introduction to established fundamentals in the field as well as a summary of the most significant developments in research. After discussing the theoretical principles and measurements of nanoscale systems, the organization of the set generally follows the historical development of nanoscience. Each peer-reviewed chapter presents a didactic treatment of the physics underlying the nanoscale materials and applications along with detailed experimental results. State-of-the-art scientific content is enriched with fundamental equations and illustrations, some in color. State-of-the-art research collected in one source Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work. Two of the contributors, as well as the editor of this work, are faculty members at the University of Hawaii, which cited the Handbook in a recent article.

Handbook of Nanophysics

Nanoelectronics and Nanophotonics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781420075519

Category: Science

Page: 779

View: 8311

Many bottom-up and top-down techniques for nanomaterial and nanostructure generation have enabled the development of applications in nanoelectronics and nanophotonics. Handbook of Nanophysics: Nanoelectronics and Nanophotonics explores important recent applications of nanophysics in the areas of electronics and photonics. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume discusses how different nanomaterials, such as quantum dots and nanotubes, are used in quantum computing, capacitors, and transistors. Leading international experts review the potential of the novel patterning techniques in molecular electronics as well as nanolithography approaches for producing semiconductor circuits. They also describe optical properties of nanostructures, nanowires, nanorods, and clusters, including cathodoluminescence, photoluminescence, and polarization-sensitivity. In addition, the book covers nanophotonic devices and nanolasers. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Handbook of Solid State Chemistry, 6 Volume Set

Author: Richard Dronskowski,Shinichi Kikkawa,Andreas Stein

Publisher: John Wiley & Sons

ISBN: 3527325875

Category: Science

Page: 3756

View: 2082

This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, as are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.

Fundamentals of Picoscience

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1466505095

Category: Science

Page: 756

View: 9588

Now ubiquitous in public discussions about cutting-edge science and technology, nanoscience has generated many advances and inventions, from the development of new quantum mechanical methods to far-reaching applications in electronics and medical diagnostics. Ushering in the next technological era, Fundamentals of Picoscience focuses on the instrumentation and experiments emerging at the picometer scale. One picometer is the length of a trillionth of a meter. Compared to a human cell of typically ten microns, this is roughly ten million times smaller. In this state-of-the-art book, international scientists and researchers at the forefront of the field present the materials and methods used at the picoscale. They address the key challenges in developing new instrumentation and techniques to visualize and measure structures at this sub-nanometer level. With numerous figures, the book will help you: Understand how picoscience is an extension of nanoscience Determine which experimental technique to use in your research Connect basic studies to the development of next-generation picoelectronic devices The book covers various approaches for detecting, characterizing, and imaging at the picoscale. It then presents picoscale methods ranging from scanning tunneling microscopy (STM) to spectroscopic approaches at sub-nanometer spatial and energy resolutions. It also covers novel picoscale structures and picometer positioning systems. The book concludes with picoscale device applications, including single molecule electronics and optical computers. Introductions in each chapter explain basic concepts, define technical terms, and give context to the main material.

Fundamentals of Attosecond Optics

Author: Zenghu Chang

Publisher: CRC Press

ISBN: 1420089382

Category: Technology & Engineering

Page: 547

View: 7624

Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances that are driving the field forward. A stand-alone textbook for courses on attosecond optics and the interaction of matter with ultrafast, high-power lasers, the book begins with basic theory and gradually advances to more complex ideas. Using both semi-classical models and quantum mechanics theories, the author explains foundational concepts and mechanisms including femtosecond lasers, high-order harmonic generation, and the technological leap that inspired attosecond pulse generation. The book introduces techniques for generating attosecond train using the basis of high-order harmonics, followed by an explanation of gating methods for extracting single isolated pulses. Chapters examine the connection between attosecond pulses and high harmonic generation, the use of driving lasers as key tools in attosecond generation, the mechanism of chirped pulse amplification, and the generation of few-cycle pulses. The book looks at carrier-envelope phase stabilization and the theoretical foundations for single atom and dipole phase response. It discusses propagation effects, introducing several approaches for improving phase matching; attosecond pulse generation and characterization, covering attosecond pulse train and single isolated pulses; and several examples of experimental applications for attosecond pulses.

Biomedical Application of Nanoparticles

Author: Bertrand Henri Rihn

Publisher: CRC Press

ISBN: 1351648411

Category: Science

Page: 328

View: 8861

Biomedical Application of Nanoparticles explores nanoparticles, their chemical and physicals properties, and how they interact in biological systems with proteins, immune system and targeted cells. Risk assessment of nanoparticles for human is described, including: cellular paradigms, transcriptomics and toxicogenomics. Finally, the applications of nanoparticles in medicine and antioxidant regenerative therapeutics are presented in several chapters with emphasis on how nanoparticles enhance transport of drugs across biological membrane barriers and therefore may enhance drug bioavailability.

Silicon Nanomaterials Sourcebook

Hybrid Materials, Arrays, Networks, and Devices, Volume Two

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1351649590

Category: Science

Page: 664

View: 7951

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Silicon Nanomaterials Sourcebook

Low-Dimensional Structures, Quantum Dots, and Nanowires, Volume One

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 1351649582

Category: Science

Page: 624

View: 1778

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. ? Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Springer Handbook of Nanotechnology

Author: Bharat Bhushan

Publisher: Springer

ISBN: 3662543575

Category: Technology & Engineering

Page: 1500

View: 4017

This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for anyone working in the rapidly evolving field of key technology, including mechanical and electrical engineers, materials scientists, physicists, and chemists.

Handbook of Nanophysics

Nanoelectronics and Nanophotonics

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781138113435

Category:

Page: 780

View: 9886

Many bottom-up and top-down techniques for nanomaterial and nanostructure generation have enabled the development of applications in nanoelectronics and nanophotonics. Handbook of Nanophysics: Nanoelectronics and Nanophotonics explores important recent applications of nanophysics in the areas of electronics and photonics. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume discusses how different nanomaterials, such as quantum dots and nanotubes, are used in quantum computing, capacitors, and transistors. Leading international experts review the potential of the novel patterning techniques in molecular electronics as well as nanolithography approaches for producing semiconductor circuits. They also describe optical properties of nanostructures, nanowires, nanorods, and clusters, including cathodoluminescence, photoluminescence, and polarization-sensitivity. In addition, the book covers nanophotonic devices and nanolasers. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, Seven Volume Set

Author: Sergey Edward Lyshevski

Publisher: CRC Press

ISBN: 9781439891346

Category: Technology & Engineering

Page: 6290

View: 729

With its original publication, the Dekker Encyclopedia of Nanoscience and Nanotechnology immediately became the reference against which all other nano references are measured. Noting that the encyclopedia was being assembled by leading authorities at an early stage in the field’s development, Sir Harry Kroto, 1996 Nobel Prize winner in Chemistry, rightfully predicted that the encyclopedia would bring together key advances in a "coherently organized framework." Among other accolades, this bestseller has gone on to win an Outstanding Academic Book Award from CHOICE magazine. Continuing to cover the field as no other resource, the Third Edition describes the fundamentals and advancements of nano-materials, -structures, -devices, and -systems with a broad range of applications to assist readers in mastering the biological, engineering, physical, and technological aspects. The new Third Edition: Crosses disciplines to examine essential nano paradigms, principles, theories, and methodologies, as well as the latest information on nanotechnologies Consists of 7 volumes with 61 new, 34 revised, and 352 revisited entries—plus quarterly updates for the PDF and HTML online versions Outlines innovations in nanoscale engineering, newly developed simulation tools, and emerging computational methods By proposing, surveying, and establishing new nano-centric premises and solutions, the Third Edition intends to spark practical discoveries, such as devising of nanotechnology-enabled systems, platforms, and products; analysis of revealing and vital facets of nanoscaled and microscopic systems; enabling of synthesis and fabrication paradigms; advanced quantitative analytic tools and approaches; and new knowledge bases in life sciences, physical sciences, and engineering. ALSO AVAILABLE ONLINE This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options For more information, visit Taylor and Francis Online. Or contact us to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367 / (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062 / (E-mail) [email protected]

Nanotechnology

Volume 6: Nanoprobes

Author: Harald Fuchs

Publisher: John Wiley & Sons

ISBN: 3527317333

Category: Technology & Engineering

Page: 388

View: 2756

The only reference book which discusses the usage of nanoprobes for structure determination, in an industry where miniaturisation is the main focus. Designed for newcomers as well as professionals already in the industry.

Handbook of Nanophysics

Functional Nanomaterials

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781138111936

Category:

Page: 788

View: 454

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Introduction to Nanoscience and Nanotechnology

Author: Gabor L. Hornyak,H.F. Tibbals,Joydeep Dutta,John J. Moore

Publisher: CRC Press

ISBN: 1420047809

Category: Technology & Engineering

Page: 1640

View: 9238

The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook, Introduction to Nanoscience and Nanotechnology builds a solid background in characterization and fabrication methods while integrating the physics, chemistry, and biology facets. The remainder of this color text focuses on applications, examining engineering aspects as well as nanomaterials and industry-specific applications in such areas as energy, electronics, and biotechnology. Also available in two course-specific volumes: Introduction to Nanoscience elucidates the nanoscale along with the societal impacts of nanoscience, then presents an overview of characterization and fabrication methods. The authors systematically discuss the chemistry, physics, and biology aspects of nanoscience, providing a complete picture of the challenges, opportunities, and inspirations posed by each facet before giving a brief glimpse at nanoscience in action: nanotechnology. Fundamentals of Nanotechnology surveys the field’s broad landscape, exploring the physical basics such as nanorheology, nanofluidics, and nanomechanics as well as industrial concerns such as manufacturing, reliability, and safety. The authors then explore the vast range of nanomaterials and systematically outline devices and applications in various industrial sectors. Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses.

Democratic Experiments

Problematizing Nanotechnology and Democracy in Europe and the United States

Author: Brice Laurent

Publisher: MIT Press

ISBN: 0262344491

Category: Technology & Engineering

Page: 288

View: 7698

In Democratic Experiments, Brice Laurent discusses the challenges that emerging technologies create for democracy today. He focuses on nanotechnology and its attendant problems, proposing nanotechnology as a lens through which to understand contemporary democracy in both theory and practice. Arguing that democracy is at stake where nanotechnology is defined as a problem, Laurent examines the sites where nanotechnology is discussed and debated by scientists, policymakers, and citizens. It is at these sites where the joint production of nanotechnology and the democratic order can be observed. Focusing on the United States, France, and Europe, and various international organizations, Laurent analyzes representations of nanotechnology in science museums, collective discussions in participatory settings, the making of categories such as "nanomaterials" or responsible innovation" in standardization and regulatory arenas, and initiatives undertaken by social movements. He contrasts American debates, in which the concern for public objectivity is central, with the French "state experiment," the European goal of harmonization, and the international concern with a global market. In France, public debate proceeded in response to public protest and encountered a radical critique of technological development; the United States experimented with an innovative approach to technology assessment. The European regulatory approach results in lengthy debates over political integration; the United States relies on the adversarial functioning of federal agencies. Because nanotechnology is a domain where concerns over anticipation and participation are pervasive, Laurent argues, nanotechnology -- and science and technology studies more generally -- provides a relevant focus for a renewed analysis of democracy.

Handbook of Nanophysics

Nanoparticles and Quantum Dots

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781420075458

Category: Science

Page: 716

View: 9768

In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Silicon Nanomaterials Sourcebook, Two-Volume Set

Author: Klaus D. Sattler

Publisher: CRC Press

ISBN: 9781498761918

Category:

Page: 1384

View: 3885

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. � Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Bio-Nanoparticles

Biosynthesis and Sustainable Biotechnological Implications

Author: Om V. Singh

Publisher: John Wiley & Sons

ISBN: 1118677684

Category: Science

Page: 384

View: 6692

Nanoparticles are considered to be the building blocks for nanotechnology and are referred to as the particles having more than one dimension of the order of 100 nm or less.The nanostructured materials are being offered as better built, long lasting, cleaner, safer, and smarter products for use in communications, medicine, transportation, agriculture and other industries. Topics in molecular recognition, biomolecule-nanocrystal conjugates as fluorescence label for biological cells, and DNA-mediated groupings of nanocrystals are widespread, intriguing researchers from both biological and engineering fields. The diversity of nanotechnology covers fields from biology to material science, physics to chemistry, and other fields with variety of specialties. Controlled size, shape, composition, crystallinity, and structure-dependent properties of nanoparticles govern the unique properties of nanotechnology. The controlled biosynthesis of nanoparticles is of high scientific and technological interest as the microorganisms grab target ions from their environment and then turn the metal ions into the element metal through enzymatic mechanism generated through their cellular (Intra/ Extra) activities. The project aims to introduce the basics and advancements made so far in the field of biosynthesis of nanoparticles for graduate students and researchers around the world. The main aims are to (a) introduce the reader to the variety of microorganisms and their ability to synthesize the nanoparticles, (b) provide an overview of the methodologies applied to biosynthesize the variety of nanoparticles of medical and commercial uses, (c) provide a literature review on diversity of microorganisms able to synthesize nanoparticles of different types, (d) to discuss the regulatory mechanisms in microorganism able to synthesize variety of nanoparticles, (e) discuss experimental design problems associated with the controlled biosynthesis of nanoparticles, (f) discuss the stability and toxicity of nanoparticles in varying environment towards their therapeutic implications. The regulations, challenges and implications of biosynthesized nanoparticles for commercial significance will also represent among the main sections of the book. These aims will be organized by invited research/ review articles from renowned researchers exploring biosynthesis of variety of nanoparticles, and differ in length and number of chapters, with the literature review section containing the bulk of the text.