Author: Herbert Federer

Publisher: Springer

ISBN: 3642620108

Category: Mathematics

Page: 677

View: 6158

Skip to content
# Nothing Found

### Geometric Measure Theory

"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)

### Sets of Finite Perimeter and Geometric Variational Problems

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

### Geometric Measure Theory

This work is intended to give a quick overview on the subject of the geometric measure theory with emphases on various basic ideas, techniques and their applications in problems arising in the calculus of variations, geometrical analysis and nonlinear partial differential equations.

### Geometric Integration Theory

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

### Geometric Integration Theory

Geared toward upper-level undergraduates and graduate students, this treatment of geometric integration theory consists of an introduction to classical theory, a postulational approach to general theory, and a section on Lebesgue theory. 1957 edition.

### Geometric Measure Theory

Geometric Measure Theory: A Beginner's Guide, Fifth Edition provides the framework readers need to understand the structure of a crystal, a soap bubble cluster, or a universe. The book is essential to any student who wants to learn geometric measure theory, and will appeal to researchers and mathematicians working in the field. Brevity, clarity, and scope make this classic book an excellent introduction to more complex ideas from geometric measure theory and the calculus of variations for beginning graduate students and researchers. Morgan emphasizes geometry over proofs and technicalities, providing a fast and efficient insight into many aspects of the subject, with new coverage to this edition including topical coverage of the Log Convex Density Conjecture, a major new theorem at the center of an area of mathematics that has exploded since its appearance in Perelman's proof of the Poincaré conjecture, and new topical coverage of manifolds taking into account all recent research advances in theory and applications. Focuses on core geometry rather than proofs, paving the way to fast and efficient insight into an extremely complex topic in geometric structures Enables further study of more advanced topics and texts Demonstrates in the simplest possible way how to relate concepts of geometric analysis by way of algebraic or topological techniques Contains full topical coverage of The Log-Convex Density Conjecture Comprehensively updated throughout

### Geometry of Sets and Measures in Euclidean Spaces

This book studies the geometric properties of general sets and measures in euclidean space.

### Metric Structures for Riemannian and Non-Riemannian Spaces

This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.

### Seminar on geometric measure theory

### A Course in Minimal Surfaces

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

### Beyond Geometry

Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.

### A Course in Metric Geometry

``Metric geometry'' is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with ``easy-to-touch'' mathematical objects using ``easy-to-visualize'' methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.

### An Introduction to Measure Theory

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

### Fourier Analysis and Hausdorff Dimension

Modern text examining the interplay between measure theory and Fourier analysis.

### Probability in Banach Spaces

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.

### A New Look at Geometry

Richly detailed survey of the evolution of geometrical ideas and development of concepts of modern geometry: projective, Euclidean, and non-Euclidean geometry; role of geometry in Newtonian physics, calculus, relativity. Over 100 exercises with answers. 1966 edition.

### Geometric Measure Theory and Real Analysis

In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.

### The Concentration of Measure Phenomenon

It was undoubtedly a necessary task to collect all the results on the concentration of measure during the past years in a monograph. The author did this very successfully and the book is an important contribution to the topic. It will surely influence further research in this area considerably. The book is very well written, and it was a great pleasure for the reviewer to read it. --Mathematical Reviews The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. A familiar example is the way the uniform measure on the standard sphere $S^n$ becomes concentrated around the equator as the dimension gets large. This property may be interpreted in terms of functions on the sphere with small oscillations, an idea going back to Levy. The phenomenon also occurs in probability, as a version of the law of large numbers, due to Emile Borel. This book offers the basic techniques and examples of the concentration of measure phenomenon. The concentration of measure phenomenon was put forward in the early seventies by V. Milman in the asymptotic geometry of Banach spaces. It is of powerful interest in applications in various areas, such as geometry, functional analysis and infinite-dimensional integration, discrete mathematics and complexity theory, and probability theory. Particular emphasis is on geometric, functional, and probabilistic tools to reach and describe measure concentration in a number of settings. The book presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications, product measures, entropic and transportation methods, as well as aspects of M. Talagrand's deep investigation of concentration in product spaces and its application in discrete mathematics and probability theory, supremum of Gaussian and empirical processes, spin glass, random matrices, etc. Prerequisites are a basic background in measure theory, functional analysis, and probability theory.

### Noncommutative Geometry

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

### Real Analysis

This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians. The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.

Full PDF eBook Download Free

Author: Herbert Federer

Publisher: Springer

ISBN: 3642620108

Category: Mathematics

Page: 677

View: 6158

*An Introduction to Geometric Measure Theory*

Author: Francesco Maggi

Publisher: Cambridge University Press

ISBN: 1139560891

Category: Mathematics

Page: N.A

View: 7647

*An Introduction*

Author: Fanghua Lin,Xiaoping Yang

Publisher: International Pressof Boston Incorporated

ISBN: 9781571461254

Category: Mathematics

Page: 237

View: 7546

Author: Steven G. Krantz,Harold R. Parks

Publisher: Springer Science & Business Media

ISBN: 9780817646790

Category: Mathematics

Page: 340

View: 5909

Author: Hassler Whitney

Publisher: Courier Corporation

ISBN: 048615470X

Category: Mathematics

Page: 400

View: 7926

*A Beginner's Guide*

Author: Frank Morgan

Publisher: Academic Press

ISBN: 0128045272

Category: Mathematics

Page: 272

View: 3198

*Fractals and Rectifiability*

Author: Pertti Mattila

Publisher: Cambridge University Press

ISBN: 9780521655958

Category: Mathematics

Page: 343

View: 4886

Author: Mikhail Gromov

Publisher: Springer Science & Business Media

ISBN: 0817645837

Category: Mathematics

Page: 586

View: 4832

Author: Robert Hardt,León Simón

Publisher: Birkhauser

ISBN: 9783764318154

Category: Mathematics

Page: 117

View: 9848

Author: Tobias H. Colding,William P. Minicozzi

Publisher: American Mathematical Soc.

ISBN: 0821853236

Category: Mathematics

Page: 313

View: 6494

*Classic Papers from Riemann to Einstein*

Author: Peter Pesic

Publisher: Courier Corporation

ISBN: 0486453502

Category: Mathematics

Page: 209

View: 9903

Author: Dmitri Burago,I͡Uriĭ Dmitrievich Burago,Sergeĭ Ivanov

Publisher: American Mathematical Soc.

ISBN: 0821821296

Category: Mathematics

Page: 415

View: 838

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 8033

Author: Pertti Mattila

Publisher: Cambridge University Press

ISBN: 1107107350

Category: Mathematics

Page: 452

View: 6209

*Isoperimetry and Processes*

Author: Michel Ledoux,Michel Talagrand

Publisher: Springer Science & Business Media

ISBN: 3642202128

Category: Mathematics

Page: 480

View: 432

Author: Irving Adler

Publisher: Courier Corporation

ISBN: 0486320499

Category: Mathematics

Page: 416

View: 2962

Author: Luigi Ambrosio

Publisher: Springer

ISBN: 8876425233

Category: Mathematics

Page: 250

View: 1203

Author: Michel Ledoux

Publisher: American Mathematical Soc.

ISBN: 0821837923

Category: Mathematics

Page: 181

View: 6148

*Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 3-9, 2000*

Author: Alain Connes,Joachim Cuntz,Erik G. Guentner,Nigel Higson,Jerome Kaminker,John E. Roberts

Publisher: Springer Science & Business Media

ISBN: 9783540203575

Category: Mathematics

Page: 356

View: 9996

*Theory of Measure and Integration Third Edition*

Author: J Yeh

Publisher: World Scientific Publishing Company

ISBN: 9814578568

Category: Mathematics

Page: 840

View: 382