Foundations of Infinitesimal Stochastic Analysis

Author: K.D. Stroyan,J.M. Bayod

Publisher: Elsevier

ISBN: 0080960421

Category: Computers

Page: 491

View: 8657

This book gives a complete and elementary account of fundamental results on hyperfinite measures and their application to stochastic processes, including the *-finite Stieltjes sum approximation of martingale integrals. Many detailed examples, not found in the literature, are included. It begins with a brief chapter on tools from logic and infinitesimal (or non-standard) analysis so that the material is accessible to beginning graduate students.

Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Author: Sergio Albeverio,Jens Erik Fenstad,Raphael Høegh-Krohn,Tom Lindstrøm

Publisher: Courier Dover Publications

ISBN: 0486468992

Category: Mathematics

Page: 526

View: 7939

Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.

Nichtstandard Analysis

Author: Dieter Landers,Lothar Rogge

Publisher: Springer-Verlag

ISBN: 3642579159

Category: Mathematics

Page: 488

View: 1441

Die Nichtstandard-Mathematik hat in den letzten Jahren einen gewaltigen Aufschwung erfahren und die Entwicklungen in den verschiedenartigsten Gebieten beeinflußt und befruchtet. Mit diesem Lehrbuch liegt nun die erste umfassende und leicht verständliche Einführung in dieses Thema in deutscher Sprache vor. An Vorkenntnissen braucht der Leser für ein gewinnbringendes Selbststudium nichts weiter als Grundkenntnisse in Linearer Algebra und Analysis, d.h. Kenntnisse des ersten Studienjahres. Ausführliche Beweise, viele Aufgaben mit Lösungen und eine gelungene didaktische Aufbereitung des Stoffes machen Methoden und Erkenntnisse durchsichtig und verständlich. Trotz der einfachen Lesbarkeit dieses Buches wird an mehreren Stellen bis zu neuesten Forschungsergebnissen vorgestoßen und viele Ergebnisse werden zum ersten Mal in Buchform vorgestellt. Mit diesem Lehrbuch wird der Leser in die Lage versetzt, schnell Nichtstandard-Methoden in den verschiedensten Bereichen selbständig anzuwenden. Es kann außerdem als Basis für ein- oder mehrsemestrige Vorlesungen verwendet werden. Aus dem Vorwort der Autoren: "Wir hoffen, daß unsere Leser beim Studium dieses Buches den Enthusiasmus der Autoren für die Schönheit, Eleganz und Wirksamkeit der Nichtstandard-Methoden teilen werden."

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Author: Dean Corbae,Maxwell B. Stinchcombe,Juraj Zeman

Publisher: Princeton University Press

ISBN: 1400833086

Category: Business & Economics

Page: 688

View: 8888

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Principles of Infinitesimal Stochastic and Financial Analysis

Author: Imme van den Berg

Publisher: World Scientific

ISBN: 9789810243586

Category: Mathematics

Page: 136

View: 505

There has been a tremendous growth in the volume of financial transactions based on mathematics, reflecting the confidence in the Nobel-Prize-winning Black-Scholes option theory. Risks emanating from obligatory future payments are covered by a strategy of trading with amounts not determined by guessing, but by solving equations, and with prices not resulting from offer and demand, but from computation. However, the mathematical theory behind that suffers from inaccessibility. This is due to the complexity of the mathematical foundation of the Black-Scholes model, which is the theory of continuous-time stochastic processes: a thorough study of mathematical finance is considered to be possible only at postgraduate level. The setting of this book is the discrete-time version of the Black-Scholes model, namely the Cox-Ross-Rubinstein model. The book gives a complete description of its background, which is now only the theory of finite stochastic processes. The novelty lies in the fact that orders of magnitude -- in the sense of nonstandard analysis -- are imposed on the parameters of the model. This not only makes the model more economically sound (such as rapid fluctuations of the market being represented by infinitesimal trading periods), but also leads to a significant simplification: the fundamental results of Black-Scholes theory are derived in full generality and with mathematical rigour, now at graduate level. The material has been repeatedly taught in a third-year course to econometricians.

Diffusions, Markov Processes, and Martingales: Volume 1, Foundations

Author: L. C. G. Rogers,David Williams

Publisher: Cambridge University Press

ISBN: 1107717493

Category: Mathematics

Page: 406

View: 5313

Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.

Truth, Possibility and Probability

New Logical Foundations of Probability and Statistical Inference

Author: R. Chuaqui

Publisher: Elsevier

ISBN: 9780080872773

Category: Mathematics

Page: 483

View: 8358

Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This unique book presents a new interpretation of probability, rooted in the traditional interpretation that was current in the 17th and 18th centuries. Mathematical models are constructed based on this interpretation, and statistical inference and decision theory are applied, including some examples in artificial intelligence, solving the main foundational problems. Nonstandard analysis is extensively developed for the construction of the models and in some of the proofs. Many nonstandard theorems are proved, some of them new, in particular, a representation theorem that asserts that any stochastic process can be approximated by a process defined over a space with equiprobable outcomes.

Stochastic Control of Hereditary Systems and Applications

Author: Mou-Hsiung Chang

Publisher: Springer Science & Business Media

ISBN: 9780387758169

Category: Mathematics

Page: 406

View: 2715

This monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a reference for those who have special interest in optimal control theory and applications of stochastic hereditary systems.

Kalman-Bucy-Filter

determinist. Beobachtung u. stochast. Filterung

Author: Karl Brammer,Gerhard Siffling

Publisher: N.A

ISBN: N.A

Category: Control theory

Page: 232

View: 6410

Das Buch will die mannigfaltigen Aufgaben der heutigen Regelungs- und Steuerungstechnik und ihre Lösung nahebringen. Das soll mit möglichst geringem Zeit- und Arbeitsaufwand für den Leser verbunden sein. Leichte Verständlichkeit, Anschaulichkeit und Anwendungsnähe sind deshalb Hauptgesichtspunkt der Darstellung. Vollständigkeit ist nicht angestrebt, vielmehr Darstellung des Wesentlichen. Mathematische Methoden werden auf das Notwendige beschränkt.

Five Lectures in Complex Analysis

Second Winter School on Complex Analysis and Operator Theory, February 5-9, 2008, University of Sevilla, Sevilla, Spain

Author: Contreras Márquez Contreras,Santiago Díaz-Madrigal

Publisher: American Mathematical Soc.

ISBN: 0821848097

Category: Mathematics

Page: 161

View: 4619

"This volume contains state-of-art survey papers in complex analysis based on lectures given at the second Winter School on Complex Analysis and Operator Theory held in February 2008 at the University of Sevilla, Sevilla, Spain." "Complex analysis is oneof the most classical branches of mathematical analysis and is closely related to many other areas of mathematics, including operator theory, harmonic analysis, probability theory, functional analysis and dynamical systems. Undoubtedly, the interplay among all these branches gives rise to very beautiful and deep results in complex analysis and its neighboring fields. This interdisciplinary aspect of complex analysis is the central topic of this volume." "This book collects the latest advances in five significant areas of rapid development in complex analysis. The papers are: Local holomorphic dynamics of diffeomorphisms in dimension one, by F. Bracci, Nonpostive curvature and complex analysis, by S. M. Buckley, Virasoro algebra and dynamics in the space of univalent functions, by I. Markina and A. Vasil'ev, Composition operators Toeplitz operators, by J. H. Shapir, and Two applications of the Bergman spaces techniques, by S. Shimorin." "The papers are aimed, in particular, at graduate students with some experince in basic complex analysis. They might also serve as introductions for general researchers in mathematical analysis who may be interested in the specific areas addressed by the authors. Indeed, the contributions can be considered as up-to-the minute reports on the current state of the fields, each of them including many recent results which may be difficult to find in the literature."--BOOK JACKET.

Grundbegriffe der Wahrscheinlichkeitsrechnung

Author: A. Kolomogoroff

Publisher: Springer-Verlag

ISBN: 3642498884

Category: Mathematics

Page: 62

View: 1378

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Zahlen und Kontinuum

eine Einführung in die Infinitesimalmathematik

Author: Detlef Laugwitz

Publisher: N.A

ISBN: N.A

Category: Nonstandard mathematical analysis

Page: 269

View: 2354


Erfahrung Mathematik

Author: P.J. Davis,R. Hersh

Publisher: Springer-Verlag

ISBN: 3034850409

Category: Science

Page: 466

View: 4053

ie ältesten uns bekannten mathematischen Schriftta D feln stammen aus der Zeit um 2400 v. ehr. ; aber wir dürfen davon ausgehen, daß das Bedürfnis, Mathematik zu schaffen, ein Ausdruck der menschlichen Zivilisation an sich ist. In vier bis fünf Jahrtausenden hat sich ein gewalti ges System von Praktiken und Begriffen - die Mathematik herangebildet, die in vielfältiger Weise mit unserem Alltag verknüpft ist. Was ist Mathematik? Was bedeutet sie? Wo mit befaßt sie sich? Was sind ihre Methoden? Wie wird sie geschaffen und benützt? Wo ist ihr Platz in der Vielgestalt der menschlichen Erfahrung? Welchen Nutzen bringt sie? Was für Schaden richtet sie an? Welches Gewicht kommt ihr zu? Diese schwierigen Fragen werden noch zusätzlich kompliziert durch die Fülle des Materials und die weitver zweigten Querverbindungen, die es dem einzelnen verun möglichen, alles zu begreifen, geschweige denn, es in seiner Gesamtheit zu erfassen und zwischen den Deckeln eines normalen Buches unterzubringen. Um von dieser Material fülle nicht erdrückt zu werden, haben sich die Autoren für eine andere Betrachtungsweise entschieden. Die Mathema tik ist seit Tausenden von Jahren ein Feld menschlicher Ak tivität. In begrenztem Rahmen ist jeder von uns ein Mathe matiker und betreibt bewußt Mathematik, wenn er zum Beispiel auf dem Markt einkauft, Tapeten ausmißt oder ei nen Keramiktopf mit einem regelmäßigen Muster verziert. In bescheidenem Ausmaß versucht sich auch jeder von uns als mathematischer Denker. Schon mit dem Ausruf «Aber Zahlen lügen nicht!» befinden wir uns in der Gesellschaft von Plato oder Lakatos.

Loeb Measures in Practice: Recent Advances

EMS Lectures 1997

Author: Nigel J. Cutland

Publisher: Springer Science & Business Media

ISBN: 9783540413844

Category: Business & Economics

Page: 111

View: 9959

This expanded version of the 1997 European Mathematical Society Lectures given by the author in Helsinki, begins with a self-contained introduction to nonstandard analysis (NSA) and the construction of Loeb Measures, which are rich measures discovered in 1975 by Peter Loeb, using techniques from NSA. Subsequent chapters sketch a range of recent applications of Loeb measures due to the author and his collaborators, in such diverse fields as (stochastic) fluid mechanics, stochastic calculus of variations ("Malliavin" calculus) and the mathematical finance theory. The exposition is designed for a general audience, and no previous knowledge of either NSA or the various fields of applications is assumed.

Stochastic Equations in Infinite Dimensions

Author: Guiseppe Da Prato,Jerzy Zabczyk

Publisher: Cambridge University Press

ISBN: 9780521059800

Category: Mathematics

Page: 454

View: 8293

The aim of this book is to give a systematic and self-contained presentation of the basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikhman that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measures on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof.

Interacting Stochastic Systems

Author: Jean-Dominique Deuschel,DFG-Schwerpunkt: Interacting Stochastic Systems of High Complexity,Andreas Greven,Research Network on "Interacting Stochastic Systems of High Complexity.",Research Network on "Interacting Stochastic Systems of High Complexity".

Publisher: Springer Science & Business Media

ISBN: 9783540230335

Category: Mathematics

Page: 450

View: 3197

The Research Network on "Interacting stochastic systems of high complexity" set up by the German Research Foundation aimed at exploring and developing connections between research in infinite-dimensional stochastic analysis, statistical physics, spatial population models from mathematical biology, complex models of financial markets or of stochastic models interacting with other sciences. This book presents a structured collection of papers on the core topics, written at the close of the 6-year programme by the research groups who took part in it. The structure chosen highlights the interweaving of certain themes and certain interconnections discovered through the joint work. This yields a reference work on results and methods that will be useful to all who work between applied probability and the physical, economic, and life sciences.

Dirichlet Forms and Analysis on Wiener Space

Author: Nicolas Bouleau,Francis Hirsch

Publisher: Walter de Gruyter

ISBN: 311085838X

Category: Mathematics

Page: 335

View: 9527

The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)