Author: K. D. Joshi

Publisher: New Age International

ISBN: 9788122401202

Category: Combinatorial analysis

Page: 748

View: 9625

Skip to content
# Nothing Found

### Foundations of Discrete Mathematics

This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.

### Foundations of discrete mathematics

### Foundations of Discrete Mathematics

### Foundations of Discrete Mathematics with Algorithms and Programming

Discrete Mathematics has permeated the whole of mathematics so much so it has now come to be taught even at the high school level. This book presents the basics of Discrete Mathematics and its applications to day-to-day problems in several areas. This book is intended for undergraduate students of Computer Science, Mathematics and Engineering. A number of examples have been given to enhance the understanding of concepts. The programming languages used are Pascal and C.

### Applied Discrete Structures

Although This Book Is Intended As A Sequel To Foundations Of Discrete Mathematics By The Same Author, It Can Be Read Independently Of The Latter, As The Relevant Background Needed Has Been Reviewed In Chapter 1. The Subsequent Chapters Deal With Graph Theory (With Applications), Analysis Of Algorithms (With A Detailed Study Of A Few Sorting Algorithms And A Discussion Of Tractability), Linear Programming (With Applications, Variations, Karmarkars Polynomial Time Algorithm, Integer And Quadratic Programming), Applications Of Algebra (To Polyas Theory Of Counting, Galois Theory, Coding Theory Of Designs). A Chapter On Matroids Familiarises The Reader With This Relatively New Branch Of Discrete Mathematics.Even Though Some Of The Topics Are Relatively Advanced, An Attempt Has Been Made To Keep The Style Elementary, So That A Sincere Student Can Read The Book On His Own. A Large Number Of Comments, Exercises, And References Is Included To Broaden The Readers Scope Of Vision. A Detailed Index Is Provided For Easy Reference.

### Discrete Mathematics for New Technology, Second Edition

Updated and expanded, Discrete Mathematics for New Technology, Second Edition provides a sympathetic and accessible introduction to discrete mathematics, including the core mathematics requirements for undergraduate computer science students. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined in the latter stages of the book. Although the theory is presented rigorously, it is illustrated by the frequent use of pertinent examples and is further reinforced with exercises-some with hints and solutions-to enable the reader to achieve a comprehensive understanding of the subject at hand. New to the Second Edition Numerous new examples and exercises designed to illustrate and reinforce mathematical concepts and facilitate students' progression through the topics New sections on typed set theory and an introduction to formal specification Presenting material that is at the foundations of mathematics itself, Discrete Mathematics for New Technology is a readable, friendly textbook designed for non-mathematicians as well as for computing and mathematics undergraduates alike.

### The Foundations of Mathematics

Finally there's an easy-to-follow book that will help readers succeed in the art of proving theorems. Sibley not only conveys the spirit of mathematics but also uncovers the skills required to succeed. Key definitions are introduced while readers are encouraged to develop an intuition about these concepts and practice using them in problems. With this approach, they'll gain a strong understanding of the mathematical language as they discover how to apply it in order to find proofs.

### Practical Foundations of Mathematics

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

### FUNDAMENTALS OF DISCRETE MATHEMATICAL STRUCTURES

This updated text, now in its Third Edition, continues to provide the basic concepts of discrete mathematics and its applications at an appropriate level of rigour. The text teaches mathematical logic, discusses how to work with discrete structures, analyzes combinatorial approach to problem-solving and develops an ability to create and understand mathematical models and algorithms essentials for writing computer programs. Every concept introduced in the text is first explained from the point of view of mathematics, followed by its relation to Computer Science. In addition, it offers excellent coverage of graph theory, mathematical reasoning, foundational material on set theory, relations and their computer representation, supported by a number of worked-out examples and exercises to reinforce the students’ skill. Primarily intended for undergraduate students of Computer Science and Engineering, and Information Technology, this text will also be useful for undergraduate and postgraduate students of Computer Applications. New to this Edition Incorporates many new sections and subsections such as recurrence relations with constant coefficients, linear recurrence relations with and without constant coefficients, rules for counting and shorting, Peano axioms, graph connecting, graph scanning algorithm, lexicographic shorting, chains, antichains and order-isomorphism, complemented lattices, isomorphic order sets, cyclic groups, automorphism groups, Abelian groups, group homomorphism, subgroups, permutation groups, cosets, and quotient subgroups. Includes many new worked-out examples, definitions, theorems, exercises, and GATE level MCQs with answers.

### MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, Second Edition

This book, in its Second Edition, provides the basic concepts and applications of discrete mathematics and graph theory. The book is aimed at undergraduate students of computer science and engineering, and information technology. It is also suitable for undergraduate and postgraduate students of computer science, mathematics and computer applications. The book exposes the students to fundamental knowledge in: - Mathematical logic, tautology and normal forms - Elementary set theory, functions and their relations - Algebraic structure, binary operation, group theory and homomorphism - Theory of permutations and combinations, binomial and multinomial theorems - Recurrence relations and methods of solving them - Graph theory, spanning tree, Eulerian and Hamiltonian circuits and isomorphism Key Features Includes a large number of worked-out problems for sound understanding of the concepts. Offers chapter-end exercises to test students’ comprehension of theory. Gives a quiz section at the end of each chapter to help students prepare for the competitive examinations. Incorporates short questions asked in universities’ examinations.

### Discrete Mathematics

As an introduction to discrete mathematics, this text provides a straightforward overview of the range of mathematical techniques available to students. Assuming very little prior knowledge, and with the minimum of technical complication, it gives an account of the foundations of modern mathematics: logic; sets; relations and functions. It then develops these ideas in the context of three particular topics: combinatorics (the mathematics of counting); probability (the mathematics of chance) and graph theory (the mathematics of connections in networks). Worked examples and graded exercises are used throughout to develop ideas and concepts. The format of this book is such that it can be easily used as the basis for a complete modular course in discrete mathematics.

### Foundations of Diatonic Theory

Foundations of Diatonic Theory: A Mathematically Based Approach to Music Fundamentals is an introductory, undergraduate-level textbook that provides an easy entry point into the challenging field of diatonic set theory, a division of music theory that applies the techniques of discrete mathematics to the properties of diatonic scales. After introducing mathematical concepts that relate directly to music theory, the text concentrates on these mathematical relationships, firmly establishing a link between introductory pedagogy and recent scholarship in music theory. It then relates concepts in diatonic set theory directly to the study of music fundamentals through pedagogical exercises and instructions. Ideal for introductory music majors, the book requires only a general knowledge of mathematics, and the exercises are provided with solutions and detailed explanations. With its basic description of musical elements, this textbook is suitable for courses in music fundamentals, music theory for non-music majors, music and mathematics, and other similar courses that allow students to improve their mathematics skills while pursuing the study of music.

### The Foundations of Mathematics

"There are many textbooks available for a so-called transition course from calculus to abstract mathematics. I have taught this course several times and always find it problematic. The Foundations of Mathematics (Stewart and Tall) is a horse of a different color. The writing is excellent and there is actually some useful mathematics. I definitely like this book."--The Bulletin of Mathematics Books

### Lectures on Discrete Mathematics for Computer Science

This textbook presents fundamental topics in discrete mathematics introduced from the perspectives of a pure mathematician and an applied computer scientist. The synergy between the two complementary perspectives is seen throughout the book; key concepts are motivated and explained through real-world examples, and yet are still formalized with mathematical rigor. The book is an excellent introduction to discrete mathematics for computer science, software engineering, and mathematics students. The first author is a leading mathematician in the area of logic, computability, and theoretical computer science, with more than 25 years of teaching and research experience. The second author is a computer science PhD student at the University of Washington specializing in database systems. The father-and-daughter team merges two different views to create a unified book for students interested in learning discrete mathematics, the connections between discrete mathematics and computer science, and the mathematical foundations of computer science. Readers will learn how to formally define abstract concepts, reason about objects (such as programs, graphs and numbers), investigate properties of algorithms, and prove their correctness. The textbook studies several well-known algorithmic problems including the path problem for graphs and finding the greatest common divisor, inductive definitions, proofs of correctness of algorithms via loop invariants and induction, the basics of formal methods such as propositional logic, finite state machines, counting, probability, as well as the foundations of databases such as relational calculus.

### Discrete Mathematics

This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.

### Mathematical Foundations of Computer Science

Mathematical Foundations of Computer Science, Volume I is the first of two volumes presenting topics from mathematics (mostly discrete mathematics) which have proven relevant and useful to computer science. This volume treats basic topics, mostly of a set-theoretical nature (sets, functions and relations, partially ordered sets, induction, enumerability, and diagonalization) and illustrates the usefulness of mathematical ideas by presenting applications to computer science. Readers will find useful applications in algorithms, databases, semantics of programming languages, formal languages, theory of computation, and program verification. The material is treated in a straightforward, systematic, and rigorous manner. The volume is organized by mathematical area, making the material easily accessible to the upper-undergraduate students in mathematics as well as in computer science and each chapter contains a large number of exercises. The volume can be used as a textbook, but it will also be useful to researchers and professionals who want a thorough presentation of the mathematical tools they need in a single source. In addition, the book can be used effectively as supplementary reading material in computer science courses, particularly those courses which involve the semantics of programming languages, formal languages and automata, and logic programming.

### Discrete Mathematics for Computer Scientists

This is a new edition of a successful introduction to discrete mathematics for computer scientists, updated and reorganised to be more appropriate for the modern day undergraduate audience. Discrete mathematics forms the theoretical basis for computer science and this text combines a rigorous approach to mathematical concepts with strong motivation of these techniques via practical examples. Key Features Thorough coverage of all area of discrete mathematics, including logic, natural numbers, coding theory, combinatorics, sets, algebraic functions, partially ordered structures, graphs, formal machines & complexity theory Special emphasis on the central role of propositional & predicate logic Full chapters on algorithm analysis & complexity theory Introductory coverage of formal machines & coding theory Over 700 exercises Flexible structure so that the material can be easily adapted for different teaching styles. New to this Edition Improved treatment of induction Coverage of more 'basic' algebra List of symbols including page references for definition/explantion Modern text design and new exercises to aid student comprehension 0201360616B04062001

### Experimental Mathematics with Maple

As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning. Experimental Mathematics with MAPLE uniquely responds to these needs. Following an emerging trend in research, it places abstraction and axiomatization at the end of a learning process that begins with computer experimentation. It introduces the foundations of discrete mathematics and, assuming no previous knowledge of computing, gradually develops basic computational skills using the latest version of the powerful MAPLE® software. The author's approach is to expose readers to a large number of concrete computational examples and encourage them to isolate the general from the particular, to synthesize computational results, formulate conjectures, and attempt rigorous proofs. Using this approach, Experimental Mathematics with MAPLE enables readers to build a foundation in discrete mathematics, gain valuable experience with algebraic computing, and develop a familiarity with basic abstract concepts, notation, and jargon. Its engaging style, numerous exercises and examples, and Internet posting of selected solutions and MAPLE worksheets make this text ideal for use both in the classroom and for self-study.

### DISCRETE MATHEMATICS

Written with a strong pedagogical focus, this second edition of the book continues to provide an exhaustive presentation of the fundamental concepts of discrete mathematical structures and their applications in computer science and mathematics. It aims to develop the ability of the students to apply mathematical thought in order to solve computation-related problems. The book is intended not only for the undergraduate and postgraduate students of mathematics but also, most importantly, for the students of Computer Science & Engineering and Computer Applications. The introductory chapter presents an overview of the foundations of the subject, consisting of topics such as logic, set theory, relations, functions, algebraic structures, and graphs. The subsequent chapters provide detailed coverage of each of these topics as well as major areas of discrete mathematics such as combinatorics, lattices and Boolean algebras. Major applications such as computer models and computation, coding theory, cryptography and databases are dealt with in the final chapters of the book. In addition to this, a new chapter on matrices is included in this edition of the book, which forms a part of MCA course curriculum. The book is replete with features which enable the building of a firm foundation of the underlying principles of the subject and also provide adequate scope for testing the comprehension acquired by the students. Each chapter contains numerous worked-out examples within the main discussion as well as several chapter-end Supplementary Examples for revision. The Self-Test and Exercises at the end of each chapter provide large numbers of objective type questions and problems respectively. Answers to objective type questions and hints to exercises are also provided. All these pedagogic features, together with thorough coverage of the subject matter, make this book a readable text for beginners as well as advanced learners of the subject.

### Kurt Gödel and the Foundations of Mathematics

This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.

Full PDF eBook Download Free

Author: K. D. Joshi

Publisher: New Age International

ISBN: 9788122401202

Category: Combinatorial analysis

Page: 748

View: 9625

Author: Peter Fletcher,Hughes Hoyle,C. Wayne Patty

Publisher: Pws Pub Co

ISBN: N.A

Category: Mathematics

Page: 781

View: 5799

Author: Albert D. Polimeni,H. Joseph Straight

Publisher: Thomson Brooks/Cole

ISBN: N.A

Category: Mathematics

Page: 368

View: 2229

Author: R. Balakrishnan,Sriraman Sridharan

Publisher: CRC Press

ISBN: 1351019139

Category: Mathematics

Page: 518

View: 3261

Author: K. D. Joshi

Publisher: New Age International

ISBN: 9788122408263

Category: Computer science

Page: 948

View: 1105

Author: Rowan Garnier,John Taylor

Publisher: CRC Press

ISBN: 9781420056983

Category: Mathematics

Page: 749

View: 1925

Author: Thomas Q. Sibley

Publisher: John Wiley & Sons

ISBN: 0470085010

Category: Mathematics

Page: 392

View: 4544

Author: Paul Taylor

Publisher: Cambridge University Press

ISBN: 9780521631075

Category: Mathematics

Page: 572

View: 3715

Author: K. R. CHOWDHARY

Publisher: PHI Learning Pvt. Ltd.

ISBN: 812035074X

Category: Mathematics

Page: 360

View: 3325

Author: BATHUL, SHAHNAZ

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120351290

Category: Science

Page: 480

View: 2113

Author: Amanda Chetwynd,Peter Diggle

Publisher: Elsevier

ISBN: 0080928609

Category: Mathematics

Page: 224

View: 5311

*A Mathematically Based Approach to Music Fundamentals*

Author: Timothy A. Johnson

Publisher: Scarecrow Press

ISBN: 0810862336

Category: Mathematics

Page: 194

View: 7637

Author: Ian Stewart,Professor of Math and Gresham Professor of Geometry Ian Stewart,David Tall,David Orme Tall

Publisher: Oxford University Press on Demand

ISBN: 9780198531654

Category: Fiction

Page: 263

View: 9336

Author: Bakhadyr Khoussainov,Nodira Khoussainova

Publisher: World Scientific Publishing Company

ISBN: 9813108126

Category: Mathematics

Page: 364

View: 2672

*Proof Techniques and Mathematical Structures*

Author: R. C. Penner

Publisher: World Scientific

ISBN: 9789810240882

Category: Computers

Page: 469

View: 8531

Author: Peter A. Fejer,Dan A. Simovici

Publisher: Springer Verlag

ISBN: 9780387974507

Category: Mathematics

Page: 425

View: 2000

Author: J. K. Truss

Publisher: Addison Wesley Publishing Company

ISBN: N.A

Category: Mathematics

Page: 585

View: 5453

Author: Franco Vivaldi

Publisher: CRC Press

ISBN: 9781584882336

Category: Mathematics

Page: 240

View: 7416

Author: N. Chandrasekaren,M. Umaparvathi

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120350979

Category: Mathematics

Page: 880

View: 7039

*Horizons of Truth*

Author: Matthias Baaz,Christos H. Papadimitriou,Hilary W. Putnam,Dana S. Scott,Charles L. Harper, Jr

Publisher: Cambridge University Press

ISBN: 1139498436

Category: Mathematics

Page: N.A

View: 6611