Etale Cohomology and the Weil Conjecture

Author: Eberhard Freitag,Reinhardt Kiehl

Publisher: Springer Science & Business Media

ISBN: 3662025418

Category: Mathematics

Page: 320

View: 6676

Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjec tures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as self contained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work.

Rational Points on Varieties

Author: Bjorn Poonen

Publisher: American Mathematical Soc.

ISBN: 1470437732

Category: Algebraic varieties

Page: 337

View: 9841

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform

Author: Reinhardt Kiehl,Rainer Weissauer

Publisher: Springer Science & Business Media

ISBN: 3662045761

Category: Mathematics

Page: 375

View: 977

The authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.

Symmetries, Topology and Resonances in Hamiltonian Mechanics

Author: Valerij V. Kozlov

Publisher: Springer Science & Business Media

ISBN: 3642783937

Category: Mathematics

Page: 378

View: 7790

John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws.

The Uncertainty Principle in Harmonic Analysis

Author: Victor Havin,Burglind Jöricke

Publisher: Springer Science & Business Media

ISBN: 3642783775

Category: Mathematics

Page: 547

View: 4889

The present book is a collection of variations on a theme which can be summed up as follows: It is impossible for a non-zero function and its Fourier transform to be simultaneously very small. In other words, the approximate equalities x :::::: y and x :::::: fj cannot hold, at the same time and with a high degree of accuracy, unless the functions x and yare identical. Any information gained about x (in the form of a good approximation y) has to be paid for by a corresponding loss of control on x, and vice versa. Such is, roughly speaking, the import of the Uncertainty Principle (or UP for short) referred to in the title ofthis book. That principle has an unmistakable kinship with its namesake in physics - Heisenberg's famous Uncertainty Principle - and may indeed be regarded as providing one of mathematical interpretations for the latter. But we mention these links with Quantum Mechanics and other connections with physics and engineering only for their inspirational value, and hasten to reassure the reader that at no point in this book will he be led beyond the world of purely mathematical facts. Actually, the portion of this world charted in our book is sufficiently vast, even though we confine ourselves to trigonometric Fourier series and integrals (so that "The U. P. in Fourier Analysis" might be a slightly more appropriate title than the one we chose).

Hilbert Modular Surfaces

Author: Gerard van der Geer

Publisher: Springer Science & Business Media

ISBN: 3642615538

Category: Mathematics

Page: 294

View: 573

Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field.

Introduction to Étale Cohomology

Author: Günter Tamme

Publisher: Springer Science & Business Media

ISBN: 3642784216

Category: Mathematics

Page: 186

View: 4307

A succinct introduction to etale cohomology. Well-presented and chosen this will be a most welcome addition to the algebraic geometrist's library.

Etale Cohomology Theory

Author: Lei Fu

Publisher: World Scientific

ISBN: 9814307726

Category: Mathematics

Page: 611

View: 3765

Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.

Cas063

Author: Ricardo Mane,Ricardo Mañe,Ricardo Mañé

Publisher: Springer Verlag

ISBN: N.A

Category: Mathematics

Page: 317

View: 9291


Field arithmetic

Author: Michael D. Fried,Moshe Jarden

Publisher: N.A

ISBN: 9783540166405

Category: Mathematics

Page: 458

View: 1979


Around Burnside

Author: A.I. Kostrikin

Publisher: Springer

ISBN: 9783540506027

Category: Mathematics

Page: 222

View: 5277

Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area.

Néron Models

Author: Siegfried Bosch,Werner Lütkebohmert,Michel Raynaud

Publisher: Springer

ISBN: 9783540505877

Category: Mathematics

Page: 328

View: 9436

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.

Knots and Surfaces

Author: N. D. Gilbert,T. Porter

Publisher: Oxford University Press, UK

ISBN: 0191591904

Category: Knot theory

Page: 280

View: 9680

Completely up-to-date, illustrated throughout, and written in an accessible style, Knots and Surfaces is an account of the mathematical theory of knots and its interaction with related fields. This is an area of intense research activity, and this text provides the advanced undergraduate with a superb introduction to this exciting field. Beginning with a simple diagrammatic approach, the book proceeds through recent advances to areas of current research. Topics including topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations combine to form a coherent and highly developed theory with which to explore and explain the accessible and intuitive problems of knots and surfaces. - ;The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces and of group presentations. Beginning with a simple diagrammatic approach to the study of knots, reflecting the artistic and geometric appeal of interlaced forms, Knots and Surfaces takes the reader through recent advances in our understanding to areas of current research. Topics included are straightforward introductions to topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations. These topics combine into a coherent and highly developed theory to explore and explain the accessible and intuitive problems of knots and surfaces. Both as an introduction to several areas of prime importance to the development of pure mathematics today, and as an account of pure mathematics in action in an unusual context, this book presents novel challenges to students and other interested readers. -

Stein Manifolds and Holomorphic Mappings

The Homotopy Principle in Complex Analysis

Author: Franc Forstnerič

Publisher: Springer

ISBN: 3319610589

Category: Mathematics

Page: 562

View: 1219

This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups./div

Field Arithmetic

Author: Michael D. Fried,Moshe Jarden

Publisher: Springer Science & Business Media

ISBN: 9783540772705

Category: Mathematics

Page: 792

View: 3212

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.