*Theory and Applications*

Author: Bill Goodwine

Publisher: Springer Science & Business Media

ISBN: 1441979190

Category: Mathematics

Page: 745

View: 4926

Skip to content
# Nothing Found

### Engineering Differential Equations

This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.

### Engineering Differential Equations

This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.

### Decomposition Methods for Differential Equations

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.

### Differential Equations: Theory and Applications

This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.

### Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.

### Theory of Stochastic Differential Equations with Jumps and Applications

Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

### Green’s Functions and Linear Differential Equations

Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

### Partial Differential Equations

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

### Optimization—Theory and Applications

This book has grown out of lectures and courses in calculus of variations and optimization taught for many years at the University of Michigan to graduate students at various stages of their careers, and always to a mixed audience of students in mathematics and engineering. It attempts to present a balanced view of the subject, giving some emphasis to its connections with the classical theory and to a number of those problems of economics and engineering which have motivated so many of the present developments, as well as presenting aspects of the current theory, particularly value theory and existence theorems. However, the presentation ofthe theory is connected to and accompanied by many concrete problems of optimization, classical and modern, some more technical and some less so, some discussed in detail and some only sketched or proposed as exercises. No single part of the subject (such as the existence theorems, or the more traditional approach based on necessary conditions and on sufficient conditions, or the more recent one based on value function theory) can give a sufficient representation of the whole subject. This holds particularly for the existence theorems, some of which have been conceived to apply to certain large classes of problems of optimization. For all these reasons it is essential to present many examples (Chapters 3 and 6) before the existence theorems (Chapters 9 and 11-16), and to investigate these examples by means of the usual necessary conditions, sufficient conditions, and value function theory.

### Theory of Differential Equations in Engineering and Mechanics

This gives comprehensive coverage of the essential differential equations students they are likely to encounter in solving engineering and mechanics problems across the field -- alongside a more advance volume on applications. This first volume covers a very broad range of theories related to solving differential equations, mathematical preliminaries, ODE (n-th order and system of 1st order ODE in matrix form), PDE (1st order, 2nd, and higher order including wave, diffusion, potential, biharmonic equations and more). Plus more advanced topics such as Green’s function method, integral and integro-differential equations, asymptotic expansion and perturbation, calculus of variations, variational and related methods, finite difference and numerical methods. All readers who are concerned with and interested in engineering mechanics problems, climate change, and nanotechnology will find topics covered in these books providing valuable information and mathematics background for their multi-disciplinary research and education.

### Difference and Differential Equations with Applications in Queueing Theory

"This book features a collection of topics that are used in stochastic processes and, particularly, in queueing theory. Differential equations, difference equations, and Markovian queues (as they relate to systems of linear differential difference equations) are presented, and the relationship between the methods and applications are thoroughly addressed"--

### ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS : THEORY AND APPLICATIONS

This book presents the theoretical concepts of methods of solutions of ordinary and partial differential equations as well as equips the students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of differential equations, different methods of solving ordinary differential equations and the solution procedure for ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The book elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel's and Legendre's equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics.

### Stochastic Differential Equations

Practical and not too rigorous, this highly readable text on stochastic calculus provides an excellent introduction to stochastic partial differential equations. Written at a moderately advanced level, it covers important topics often ignored by other texts on the subject—including Fokker-Planck equations—and it functions as both a classroom text and a reference for professionals and students. The only prerequisite is the mathematical preparation usual for students of physical and engineering sciences. An introductory chapter, intended for reference and review, covers the basics of probability theory. Subsequent chapters focus on Markov and diffusion processes, Wiener process and white noise, and stochastic integrals and differential equations. Additional topics include questions of modeling and approximation, stability of stochastic dynamic systems, optimal filtering of a disturbed signal, and optimal control of stochastic dynamic systems.

### Applications of Lie's Theory of Ordinary and Partial Differential Equations

Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. Applications of Lie's Theory of Ordinary and Partial Differential Equations provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasizes clarity and immediacy of understanding rather than encyclopedic completeness, rigor, and generality. This enables readers to quickly grasp the essentials and start applying the methods to find solutions. The book includes worked examples and problems from a wide range of scientific and engineering fields.

### Theory and Application of Hyperbolic Systems of Quasilinear Equations

Second volume of a 2-volume set examines physical systems that can usefully be modeled by equations of the first order. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, more. Exercises. 1989 edition. 198 black-and-white illustrations. Author and subject indices.

### Theory and Applications of Fractional Differential Equations

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

### Theory and Applications of Partial Differential Equations

This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.

### Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

### Differential Equations for Engineers

Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

### Bifurcation Theory

In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems.

Full PDF eBook Download Free

*Theory and Applications*

Author: Bill Goodwine

Publisher: Springer Science & Business Media

ISBN: 1441979190

Category: Mathematics

Page: 745

View: 4926

*Theory and Applications*

Author: Bill Goodwine

Publisher: Springer

ISBN: 1441979182

Category: Language Arts & Disciplines

Page: 745

View: 6836

*Theory and Applications*

Author: Juergen Geiser

Publisher: CRC Press

ISBN: 9781439810972

Category: Mathematics

Page: 304

View: 3682

*with Maple®*

Author: David Betounes

Publisher: Springer Science & Business Media

ISBN: 1475749716

Category: Mathematics

Page: 680

View: 643

Author: L.E. El'sgol'ts,S.B. Norkin

Publisher: Academic Press

ISBN: 0080956149

Category: Computers

Page: 356

View: 5756

*Mathematical and Analytical Techniques with Applications to Engineering*

Author: Rong SITU

Publisher: Springer Science & Business Media

ISBN: 0387251758

Category: Mathematics

Page: 434

View: 8904

*Theory, Applications, and Computation*

Author: Prem K. Kythe

Publisher: CRC Press

ISBN: 1439840091

Category: Mathematics

Page: 382

View: 930

*Theory and Completely Solved Problems*

Author: Thomas Hillen,I. E. Leonard,Henry van Roessel

Publisher: John Wiley & Sons

ISBN: 1118438434

Category: Mathematics

Page: 696

View: 9546

*Problems with Ordinary Differential Equations*

Author: L. Cesari

Publisher: Springer Science & Business Media

ISBN: 1461381657

Category: Science

Page: 542

View: 9081

Author: Kam Tim Chau

Publisher: CRC Press

ISBN: 1498767796

Category: Mathematics

Page: 973

View: 1036

Author: Aliakbar Montazer Haghighi,Dimitar P. Mishev

Publisher: John Wiley & Sons

ISBN: 1118393244

Category: Business & Economics

Page: 404

View: 9419

Author: NITA H. SHAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120341029

Category:

Page: N.A

View: 5648

*Theory and Applications*

Author: Ludwig Arnold

Publisher: Severn House Paperbacks

ISBN: 9780486482361

Category: Stochastic differential equations

Page: 256

View: 9690

Author: L Dresner

Publisher: CRC Press

ISBN: 9781420050783

Category: Science

Page: 225

View: 3972

Author: Hyun-Ku Rhee,Rutherford Aris,Neal Russell Amundson

Publisher: Courier Corporation

ISBN: 9780486419947

Category: Differential equations, Hyperbolic

Page: 548

View: 8406

Author: Anatoliĭ Aleksandrovich Kilbas,H. M. Srivastava,Juan J. Trujillo

Publisher: Elsevier

ISBN: 9780444518323

Category: Mathematics

Page: 523

View: 7285

Author: Piero Bassanini,Alan R. Elcrat

Publisher: Springer Science & Business Media

ISBN: 1489918752

Category: Mathematics

Page: 444

View: 7823

Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii

Publisher: CRC Press

ISBN: 1466581492

Category: Mathematics

Page: 1609

View: 3713

Author: Wei-Chau Xie

Publisher: Cambridge University Press

ISBN: 1139488163

Category: Technology & Engineering

Page: N.A

View: 7544

*An Introduction with Applications to Partial Differential Equations*

Author: Hansjörg Kielhöfer

Publisher: Springer Science & Business Media

ISBN: 1461405025

Category: Mathematics

Page: 400

View: 7315