*Theory and Applications*

Author: Bill Goodwine

Publisher: Springer Science & Business Media

ISBN: 1441979190

Category: Mathematics

Page: 745

View: 3478

Skip to content
# Nothing Found

### Engineering Differential Equations

This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.

### ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.

### Partielle Differentialgleichungen und numerische Methoden

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

### Differential Equations: Theory and Applications

"This book provides a comprehensive introduction to the theory of ordinary differential equations at the graduate level and includes applications to Newtonian and Hamiltonian mechanics. It not only has a large number of examples and computer graphics to illustrate the theory, but also has a complete collection of proofs for the major theorems ranging from the usual existence and uniqueness results to the Hartman-Grobman theorem and the Jordan canonical form theorem." "The book can be used almost exclusively in the traditional way for graduate math courses, or it can be used in an applied way for interdisciplinary courses involving physics, engineering, and other science majors. For this reason, an extensive computer component using Maple is provided on the accompanying CD-ROM and is cross referenced in the text."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved

### Optimale Steuerung partieller Differentialgleichungen

Die mathematische Theorie der optimalen Steuerung hat sich im Zusammenhang mit Berechnungen für die Luft- und Raumfahrt schnell zu einem wichtigen und eigenständigen Gebiet der angewandten Mathematik entwickelt. Die optimale Steuerung durch partielle Differentialgleichungen modellierter Prozesse wird eine numerische Herausforderung der Zukunft sein. Sie erfordert die Analysis nichtlinearer partieller Differentialgleichungen, Optimierung im Funktionenraum, nichtlineare Funktionalanalysis sowie Optimierungsverfahren für extrem große Aufgaben. Im Buch werden entsprechende Grundlagen mit langsam steigendem Schwierigkeitsgrad entwickelt. Grundkenntnisse zu partiellen Differentialgleichungen und der Funktionalanalysis werden jeweils dort gebracht, wo sie konkret nötig sind. Das Buch enthält viele Beispiele und eignet sich als Grundlage für Vorlesungen und Seminare.

### Theory and Applications of Partial Differential Equations

This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.

### ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS : THEORY AND APPLICATIONS

This book presents the theoretical concepts of methods of solutions of ordinary and partial differential equations as well as equips the students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of differential equations, different methods of solving ordinary differential equations and the solution procedure for ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The book elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel's and Legendre's equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics.

### Theory of Stochastic Differential Equations with Jumps and Applications

Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

### Decomposition Methods for Differential Equations

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.

### Stochastic Differential Equations

Practical and not too rigorous, this highly readable text on stochastic calculus provides an excellent introduction to stochastic partial differential equations. Written at a moderately advanced level, it covers important topics often ignored by other texts on the subject—including Fokker-Planck equations—and it functions as both a classroom text and a reference for professionals and students. The only prerequisite is the mathematical preparation usual for students of physical and engineering sciences. An introductory chapter, intended for reference and review, covers the basics of probability theory. Subsequent chapters focus on Markov and diffusion processes, Wiener process and white noise, and stochastic integrals and differential equations. Additional topics include questions of modeling and approximation, stability of stochastic dynamic systems, optimal filtering of a disturbed signal, and optimal control of stochastic dynamic systems.

### Ordinary Differential Equations with Applications

This graduate-level textbook offers students a rapid introduction to the language of ordinary differential equations followed by a careful treatment of the central topics of the qualitative theory. In addition, special attention is given to the origins and applications of differential equations in physical science and engineering.

### Introduction to the Theory and Applications of Functional Differential Equations

This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.

### Differential Equations for Engineers

Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

### DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

Primarily intended for the undergraduate students in Mathematics, Physics and Engineering, this text gives in-depth coverage of differential equations and the methods of solving them. The book begins with the basic definitions, the physical and geometric origins of differential equations, and the methods for solving first-order differential equations. Then it goes on to give the applications of these equations to such areas as biology, medical sciences, electrical engineering and economics. The text also discusses, systematically and logically, higher-order differential equations and their applications to telecom-munications, civil engineering, cardiology and detec-tion of diabetes, as also the methods of solving simultaneous differential equations and their applica-tions. Besides, the book provides a detailed discussion on Laplace transform and their applications, partial differential equations and their applications to vibration of a stretched string, heat flow, transmission lines, etc., and calculus of variations and its applications. This book, which is a happy fusion of theory and application, would also be useful to postgraduate students.

### Applications of Lie's Theory of Ordinary and Partial Differential Equations

Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. Applications of Lie's Theory of Ordinary and Partial Differential Equations provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasizes clarity and immediacy of understanding rather than encyclopedic completeness, rigor, and generality. This enables readers to quickly grasp the essentials and start applying the methods to find solutions. The book includes worked examples and problems from a wide range of scientific and engineering fields.

### Optimal Control of Partial Differential Equations

"Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tr'oltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization."--Publisher's description.

### Mathematical Methods in Engineering

This text focuses on a variety of topics in mathematics in common usage in graduate engineering programs including vector calculus, linear and nonlinear ordinary differential equations, approximation methods, vector spaces, linear algebra, integral equations and dynamical systems. The book is designed for engineering graduate students who wonder how much of their basic mathematics will be of use in practice. Following development of the underlying analysis, the book takes students through a large number of examples that have been worked in detail. Students can choose to go through each step or to skip ahead if they so desire. After seeing all the intermediate steps, they will be in a better position to know what is expected of them when solving assignments, examination problems, and when on the job. Chapters conclude with exercises for the student that reinforce the chapter content and help connect the subject matter to a variety of engineering problems. Students have grown up with computer-based tools including numerical calculations and computer graphics; the worked-out examples as well as the end-of-chapter exercises often use computers for numerical and symbolic computations and for graphical display of the results.

### DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

Primarily intended for the undergraduate students of mathematics, physics and engineering, this text gives in-depth coverage of differential equations and the methods for solving them. The book begins with the definitions, the physical and geometric origins of differential equations, and the methods for solving the first order differential equations. Then it goes on to give the applications of these equations to such areas as biology, medical sciences, electrical engineering and economics. The text also discusses, systematically and logically, higher order differential equations and their applications to telecommunications, civil engineering, cardiology and detection of diabetes, as also the methods of solving simultaneous differential equations and their applications. Besides, the book provides a detailed discussion on Laplace transforms and their applications, partial differential equations and their applications to vibration of stretched string, heat flow, transmission lines, etc., and calculus of variations and its applications. The book, which is a happy fusion of theory and application, would also be useful to postgraduate students.NEW TO THIS EDITION • New sections on: (a) Equations reducible to linear partial differential equations (b) General method for solving the second order non-linear partial differential equations (Monge’s Method) (c) Lagrange’s equations of motion • Number of solved examples in Chapters 5, 7, 8, 9 and 10.

### Differential and integral inequalities; theory and applications PART B: Functional, partial, abstract, and complex differential equations

Differential and integral inequalities; theory and applications PART B: Functional, partial, abstract, and complex differential equations

### Partial Differential Equations

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Full PDF eBook Download Free

*Theory and Applications*

Author: Bill Goodwine

Publisher: Springer Science & Business Media

ISBN: 1441979190

Category: Mathematics

Page: 745

View: 3478

*THEORY AND APPLICATIONS*

Author: NITA H. SHAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120350871

Category: Mathematics

Page: 528

View: 5528

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 7888

*theory and applications : with Mapple*

Author: David Betounes

Publisher: Springer Science & Business Media

ISBN: 9780387951409

Category: Computers

Page: 680

View: 3205

*Theorie, Verfahren und Anwendungen*

Author: Fredi Tröltzsch

Publisher: Springer-Verlag

ISBN: 3322968448

Category: Mathematics

Page: 298

View: 3433

Author: Piero Bassanini,Alan R. Elcrat

Publisher: Springer Science & Business Media

ISBN: 1489918752

Category: Mathematics

Page: 444

View: 3526

Author: NITA H. SHAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120341029

Category:

Page: N.A

View: 3287

*Mathematical and Analytical Techniques with Applications to Engineering*

Author: Rong SITU

Publisher: Springer Science & Business Media

ISBN: 0387251758

Category: Mathematics

Page: 434

View: 2853

*Theory and Applications*

Author: Juergen Geiser

Publisher: CRC Press

ISBN: 9781439810972

Category: Mathematics

Page: 304

View: 2287

*Theory and Applications*

Author: Ludwig Arnold

Publisher: Severn House Paperbacks

ISBN: 9780486482361

Category: Stochastic differential equations

Page: 256

View: 1824

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 9780387985350

Category: Mathematics

Page: 561

View: 8911

Author: V. Kolmanovskii,A. Myshkis

Publisher: Springer Science & Business Media

ISBN: 9401719659

Category: Mathematics

Page: 648

View: 3618

Author: Wei-Chau Xie

Publisher: Cambridge University Press

ISBN: 1139488163

Category: Technology & Engineering

Page: N.A

View: 9453

Author: ZAFAR AHSAAN

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120325234

Category: Mathematics

Page: 528

View: 2032

Author: L Dresner

Publisher: CRC Press

ISBN: 9781420050783

Category: Science

Page: 225

View: 8237

*Theory, Methods, and Applications*

Author: Fredi Tröltzsch

Publisher: American Mathematical Soc.

ISBN: 0821849042

Category: Mathematics

Page: 399

View: 5059

Author: Joseph M. Powers,Mihir Sen

Publisher: Cambridge University Press

ISBN: 1316194590

Category: Technology & Engineering

Page: N.A

View: 3244

Author: ZAFAR AHSAN

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120352696

Category: Mathematics

Page: 660

View: 8959

Author: Lakshmikantham

Publisher: Academic Press

ISBN: 0080955649

Category: Computers

Page: 316

View: 9816

*Theory and Completely Solved Problems*

Author: Thomas Hillen,I. E. Leonard,Henry van Roessel

Publisher: John Wiley & Sons

ISBN: 1118438434

Category: Mathematics

Page: 696

View: 1626