*An Introduction with Applications*

Author: Martin Bohner,Allan Peterson

Publisher: Springer Science & Business Media

ISBN: 1461202019

Category: Mathematics

Page: 358

View: 4813

Skip to content
# Nothing Found

### Dynamic Equations on Time Scales

On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

### Advances in Dynamic Equations on Time Scales

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

### Stability Theory for Dynamic Equations on Time Scales

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

### Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales

Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales.

### Dynamic Inequalities On Time Scales

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

### Multivariable Dynamic Calculus on Time Scales

This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

### Integral Equations on Time Scales

This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.

### Generalized Ordinary Differential Equations

The contemporary approach of J Kurzweil and R Henstock to the Perron integral is applied to the theory of ordinary differential equations in this book. It focuses mainly on the problems of continuous dependence on parameters for ordinary differential equations. For this purpose, a generalized form of the integral based on integral sums is defined. The theory of generalized differential equations based on this integral is then used, for example, to cover differential equations with impulses or measure differential equations. Solutions of generalized differential equations are found to be functions of bounded variations.The book may be used for a special undergraduate course in mathematics or as a postgraduate text. As there are currently no other special research monographs or textbooks on this topic in English, this book is an invaluable reference text for those interested in this field.

### Oscillation Theory of Dynamic Equations on Time Scales

The study of dynamic equations on time scales, which goes back to its founder Stefan Hilger is an area of mathematics and has been created in order to unify the study of differential and difference equations. The oscillation theory as a part of the qualitative theory of dynamic equations on time scales has been developed rapidly in the past ten years. The extensive application prospect facilitates the development of this field. In fact there are some applications of dynamic equations in population dynamics, quantum mechanics, electrical engineering, neural networks, heat transfer, and combinatorics. The book tends to center around the relevant oscillation theory of second and third order dynamic equations and second order neutral dynamic equations on time scales. It is a text book giving detailed proofs and illustrative examples, which is intended for both self-study and a course for graduate levels. It is believed to be the first book dedicated to the oscillation of dynamic equations on time scales.

### Impulsive Differential Equations and Inclusions

### Two-Point Boundary Value Problems: Lower and Upper Solutions

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction. · Presents the fundamental features of the method · Construction of lower and upper solutions in problems · Working applications and illustrated theorems by examples · Description of the history of the method and Bibliographical notes

### Oscillation Theory

### Fractional Calculus for Scientists and Engineers

This book gives a practical overview of Fractional Calculus as it relates to Signal Processing

### Hardy Type Inequalities on Time Scales

The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.

### Transient Chaos

The aim of this Book is to give an overview, based on the results of nearly three decades of intensive research, of transient chaos. One belief that motivates us to write this book is that, transient chaos may not have been appreciated even within the nonlinear-science community, let alone other scientific disciplines.

### Dynamic Systems on Measure Chains

From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: The readership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.

### Multiple Time Scales

Multiple Time Scales presents various numerical methods for solving multiple-time-scale problems. The selection first elaborates on considerations on solving problems with multiple scales; problems with different time scales; and nonlinear normal-mode initialization of numerical weather prediction models. Discussions focus on analysis of observations, nonlinear analysis, systems of ordinary differential equations, and numerical methods for problems with multiple scales. The text then examines the diffusion-synthetic acceleration of transport iterations, with application to a radiation hydrodynamics problem and implicit methods in combustion and chemical kinetics modeling. The publication ponders on molecular dynamics and Monte Carlo simulations of rare events; direct implicit plasma simulation; orbit averaging and subcycling in particle simulation of plasmas; and hybrid and collisional implicit plasma simulation models. Topics include basic moment method, electron subcycling, gyroaveraged particle simulation, and the electromagnetic direct implicit method. The selection is a valuable reference for researchers interested in pursuing further research on the use of numerical methods in solving multiple-time-scale problems.

### Multiple Time Scale Dynamics

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.

### Variational Methods in Mathematical Physics

The first edition (in German) had the prevailing character of a textbook owing to the choice of material and the manner of its presentation. This second (translated, revised, and extended) edition, however, includes in its new parts considerably more recent and advanced results and thus goes partially beyond the textbook level. We should emphasize here that the primary intentions of this book are to provide (so far as possible given the restrictions of space) a selfcontained presentation of some modern developments in the direct methods of the cal culus of variations in applied mathematics and mathematical physics from a unified point of view and to link it to the traditional approach. These modern developments are, according to our background and interests: (i) Thomas-Fermi theory and related theories, and (ii) global systems of semilinear elliptic partial-differential equations and the existence of weak solutions and their regularity. Although the direct method in the calculus of variations can naturally be considered part of nonlinear functional analysis, we have not tried to present our material in this way. Some recent books on nonlinear functional analysis in this spirit are those by K. Deimling (Nonlinear Functional Analysis, Springer, Berlin Heidelberg 1985) and E. Zeidler (Nonlinear Functional Analysis and Its Applications, Vols. 1-4; Springer, New York 1986-1990).

### Mathematical Approaches to Problems in Resource Management and Epidemiology

Increasingly, mathematical methods are being used to advantage in addressing the problems facing humanity in managing its environment. Problems in resource management and epidemiology especially have demonstrated the utility of quantitative modeling. To explore these approaches, the Center of Applied Mathematics at Cornell University organized a conference in Fall, 1987, with the objective of surveying and assessing the state of the art. This volume records the proceedings of that conference. Underlying virtually all of these studies are models of population growth, from individual cells to large vertebrates. Cell population growth presents the simplest of systems for study, and is of fundamental importance in its own right for a variety of medical and environmental applications. In Part I of this volume, Michael Shuler describes computer models of individual cells and cell populations, and Frank Hoppensteadt discusses the synchronization of bacterial culture growth. Together, these provide a valuable introduction to mathematical cell biology.

Full PDF eBook Download Free

*An Introduction with Applications*

Author: Martin Bohner,Allan Peterson

Publisher: Springer Science & Business Media

ISBN: 1461202019

Category: Mathematics

Page: 358

View: 4813

Author: Martin Bohner,Allan C. Peterson

Publisher: Springer Science & Business Media

ISBN: 0817682309

Category: Mathematics

Page: 348

View: 6226

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

ISBN: 3319422138

Category: Mathematics

Page: 223

View: 7150

Author: Svetlin G. Georgiev

Publisher: Springer

ISBN: 9783319739533

Category: Mathematics

Page: 360

View: 7705

Author: Ravi Agarwal,Donal O'Regan,Samir Saker

Publisher: Springer

ISBN: 3319110020

Category: Mathematics

Page: 256

View: 4647

Author: Martin Bohner,Svetlin G. Georgiev

Publisher: Springer

ISBN: 3319476203

Category: Mathematics

Page: 603

View: 5760

Author: Svetlin G. Georgiev

Publisher: Springer

ISBN: 9462392285

Category: Mathematics

Page: 402

View: 9961

Author: ?tefan Schwabik

Publisher: World Scientific

ISBN: 9789810212254

Category: Mathematics

Page: 382

View: 8651

*Second and Third Orders*

Author: Samir Saker

Publisher: LAP Lambert Academic Publishing

ISBN: 9783838360287

Category: Difference equations

Page: 592

View: 1491

Author: N.A

Publisher: Hindawi Publishing Corporation

ISBN: 977594550X

Category: Differential equations

Page: 366

View: 8817

Author: C. De Coster,P. Habets

Publisher: Elsevier

ISBN: 9780080462479

Category: Mathematics

Page: 502

View: 5495

Author: K. Kreith

Publisher: Springer

ISBN: 3540400052

Category: Mathematics

Page: 116

View: 7190

Author: Manuel Duarte Ortigueira

Publisher: Springer Science & Business Media

ISBN: 9789400707474

Category: Mathematics

Page: 154

View: 7373

Author: Ravi Agarwal,Donal O'Regan,Samir Saker

Publisher: Springer

ISBN: 3319442996

Category: Mathematics

Page: 305

View: 5706

*Complex Dynamics on Finite Time Scales*

Author: Ying-Cheng Lai,Tamás Tél

Publisher: Springer Science & Business Media

ISBN: 9781441969873

Category: Mathematics

Page: 496

View: 6281

Author: V. Lakshmikantham,S. Sivasundaram,B. Kaymakcalan

Publisher: Springer Science & Business Media

ISBN: 1475724497

Category: Mathematics

Page: 294

View: 612

Author: Jeremiah U. Brackbill,Bruce I. Cohen

Publisher: Academic Press

ISBN: 1483257568

Category: Mathematics

Page: 456

View: 5491

Author: Christian Kuehn

Publisher: Springer

ISBN: 3319123165

Category: Mathematics

Page: 814

View: 915

*A Unified Approach*

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer Science & Business Media

ISBN: 3642826989

Category: Science

Page: 410

View: 6055

*Proceedings of a Conference held at Ithaca, NY, Oct. 28–30, 1987*

Author: Dawn Bies,Simon A. Levin,Christine A. Shoemaker

Publisher: Springer Science & Business Media

ISBN: 3642466931

Category: Mathematics

Page: 327

View: 1915