*An Introduction with Applications*

Author: Martin Bohner,Allan Peterson

Publisher: Springer Science & Business Media

ISBN: 1461202019

Category: Mathematics

Page: 358

View: 553

Skip to content
# Nothing Found

### Dynamic Equations on Time Scales

On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

### Advances in Dynamic Equations on Time Scales

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

### Advances in Dynamic Equations on Time Scales

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

### Dynamic Inequalities On Time Scales

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

### Multivariable Dynamic Calculus on Time Scales

This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

### Stability Theory for Dynamic Equations on Time Scales

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

### Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales

Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales.

### Multiple Time Scales

Multiple Time Scales presents various numerical methods for solving multiple-time-scale problems. The selection first elaborates on considerations on solving problems with multiple scales; problems with different time scales; and nonlinear normal-mode initialization of numerical weather prediction models. Discussions focus on analysis of observations, nonlinear analysis, systems of ordinary differential equations, and numerical methods for problems with multiple scales. The text then examines the diffusion-synthetic acceleration of transport iterations, with application to a radiation hydrodynamics problem and implicit methods in combustion and chemical kinetics modeling. The publication ponders on molecular dynamics and Monte Carlo simulations of rare events; direct implicit plasma simulation; orbit averaging and subcycling in particle simulation of plasmas; and hybrid and collisional implicit plasma simulation models. Topics include basic moment method, electron subcycling, gyroaveraged particle simulation, and the electromagnetic direct implicit method. The selection is a valuable reference for researchers interested in pursuing further research on the use of numerical methods in solving multiple-time-scale problems.

### Hardy Type Inequalities on Time Scales

The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.

### Quantum Calculus

Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.

### Stability Theory for Dynamic Equations on Time Scales

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

### Integral Equations on Time Scales

This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.

### Impulsive Differential Equations and Inclusions

### Transient Chaos

The aim of this Book is to give an overview, based on the results of nearly three decades of intensive research, of transient chaos. One belief that motivates us to write this book is that, transient chaos may not have been appreciated even within the nonlinear-science community, let alone other scientific disciplines.

### Dynamic Systems on Measure Chains

From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: The readership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.

### Asymptotic Integration of Differential and Difference Equations

This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.

### Difference Equations and Inequalities

A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and other disciplines. It features 200 new problems, 400 additional references, and a new chapter on the qualitative properties of solutions of neutral difference equations.

### Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations

In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.

### Nonoscillation and Oscillation Theory for Functional Differential Equations

This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential equations, second-order delay and ordinary differential equations, higher-order delay differential equations, and systems of nonlinear differential equations. The final chapter explores key aspects of the oscillation of dynamic equations on time scales-a new and innovative theory that accomodates differential and difference equations simultaneously.

Full PDF eBook Download Free

*An Introduction with Applications*

Author: Martin Bohner,Allan Peterson

Publisher: Springer Science & Business Media

ISBN: 1461202019

Category: Mathematics

Page: 358

View: 553

Author: Martin Bohner,Allan C. Peterson

Publisher: Springer Science & Business Media

ISBN: 0817682309

Category: Mathematics

Page: 348

View: 5481

Author: Martin Bohner,Allan C. Peterson

Publisher: Springer Science & Business Media

ISBN: 0817682309

Category: Mathematics

Page: 348

View: 5845

Author: Ravi Agarwal,Donal O'Regan,Samir Saker

Publisher: Springer

ISBN: 3319110020

Category: Mathematics

Page: 256

View: 5728

Author: Martin Bohner,Svetlin G. Georgiev

Publisher: Springer

ISBN: 3319476203

Category: Mathematics

Page: 603

View: 3881

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

ISBN: 3319422138

Category: Mathematics

Page: 223

View: 4568

Author: Svetlin G. Georgiev

Publisher: Springer

ISBN: 3319739549

Category: Mathematics

Page: 360

View: 9811

Author: Jeremiah U. Brackbill,Bruce I. Cohen

Publisher: Academic Press

ISBN: 1483257568

Category: Mathematics

Page: 456

View: 6041

Author: Ravi Agarwal,Donal O'Regan,Samir Saker

Publisher: Springer

ISBN: 3319442996

Category: Mathematics

Page: 305

View: 6863

Author: Victor Kac,Pokman Cheung

Publisher: Springer Science & Business Media

ISBN: 1461300711

Category: Mathematics

Page: 112

View: 3465

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

ISBN: 3319422138

Category: Mathematics

Page: 223

View: 8601

Author: Svetlin G. Georgiev

Publisher: Springer

ISBN: 9462392285

Category: Mathematics

Page: 402

View: 6071

Author: N.A

Publisher: Hindawi Publishing Corporation

ISBN: 977594550X

Category: Differential equations

Page: 366

View: 5778

*Complex Dynamics on Finite Time Scales*

Author: Ying-Cheng Lai,Tamás Tél

Publisher: Springer Science & Business Media

ISBN: 9781441969873

Category: Mathematics

Page: 496

View: 5894

Author: V. Lakshmikantham,S. Sivasundaram,B. Kaymakcalan

Publisher: Springer Science & Business Media

ISBN: 9780792341161

Category: Mathematics

Page: 294

View: 2314

Author: Sigrun Bodine,Donald A. Lutz

Publisher: Springer

ISBN: 331918248X

Category: Mathematics

Page: 402

View: 3091

*Theory, Methods, and Applications*

Author: Ravi P. Agarwal

Publisher: CRC Press

ISBN: 9781420027020

Category: Mathematics

Page: 1000

View: 6653

Author: R.P. Agarwal,Said R. Grace,Donal O'Regan

Publisher: Springer Science & Business Media

ISBN: 9401725152

Category: Mathematics

Page: 672

View: 5420

Author: Ravi P. Agarwal,Martin Bohner,Wan-Tong Li

Publisher: CRC Press

ISBN: 0203025741

Category: Mathematics

Page: 400

View: 9448