Differential Topology

Author: Victor Guillemin,Alan Pollack

Publisher: American Mathematical Soc.

ISBN: 0821851934

Category: Mathematics

Page: 222

View: 8093

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.

Differential Forms

Author: Guillemin Victor,Haine Peter

Publisher: World Scientific

ISBN: 9813272791

Category: Mathematics

Page: 272

View: 6756

There already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough.The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications.In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Čech cohomology groups of a differential manifold and its de Rham cohomology groups.

Lectures on the Topology of 3-Manifolds

An Introduction to the Casson Invariant

Author: Nikolai Saveliev

Publisher: Walter de Gruyter

ISBN: 3110250365

Category: Mathematics

Page: 218

View: 5753

This textbook – now in its second revised and extended edition – introduces the topology of 3- and 4-dimensional manifolds. It also considers new developments especially related to the Heegaard Floer and contact homology. The book is accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic topology, including the fundamental group, basic homology theory, and Poincaré duality on manifolds.

A Geometric Approach to Differential Forms

Author: David Bachman

Publisher: Springer Science & Business Media

ISBN: 0817683046

Category: Mathematics

Page: 156

View: 4290

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Heusler Alloys

Properties, Growth, Applications

Author: Claudia Felser,Atsufumi Hirohata

Publisher: Springer

ISBN: 3319214497

Category: Technology & Engineering

Page: 486

View: 8657

This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.

Lectures on Differential Geometry

Author: Shlomo Sternberg

Publisher: American Mathematical Soc.

ISBN: 0821813854

Category: Mathematics

Page: 442

View: 5443

This book is based on lectures given at Harvard University during the academic year 1960-1961. The presentation assumes knowledge of the elements of modern algebra (groups, vector spaces, etc.) and point-set topology and some elementary analysis. Rather than giving all the basic information or touching upon every topic in the field, this work treats various selected topics in differential geometry. The author concisely addresses standard material and spreads exercises throughout the text. His reprint has two additions to the original volume: a paper written jointly with V. Guillemin at the beginning of a period of intense interest in the equivalence problem and a short description from the author on results in the field that occurred between the first and the second printings.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 9026

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Lie-Gruppen und Lie-Algebren

Author: Joachim Hilgert,Karl-Hermann Neeb

Publisher: Springer-Verlag

ISBN: 3322802701

Category: Education

Page: 361

View: 5995

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gruppentheorie.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 427

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Einführung in die Differentialtopologie

Korrigierter Nachdruck

Author: Theodor Bröcker,Klaus Jänich

Publisher: Springer

ISBN: 9783540064619

Category: Mathematics

Page: 168

View: 2860

Das Ziel dieses Buches ist, die eigentlich elementargeometrischen Methoden der Differentialtopologie darzustellen. Es richtet sich an Studenten mit Grundkenntnissen in Analysis und allgemeiner Topologie. Wir beweisen Einbettungs-, Isotopie-und Transversalitätssätze und behandeln als wichtige Techniken den Satz von Sard, Partitionen der Eins, dynamische Systeme und (nach Serge Langs Vorbild) Sprays, die zusammenhängende Summe, Tubenumgebungen, Kra­ gen und das Zusammenkleben von berandeten Mannigfaltigkeiten längs des Randes. Wir haben, wie wohl heute jeder jüngere Topologe, aus Milnors Schriften [4, 5, 6J selbst viel gelernt, wovon sich mancherlei Spuren im Text finden, und auch Serge Langs vorzügliche Darstellung [3J haben wir gelegentlich benutzt - was ängstlich zu vermeiden einem Buch über Differentialtopologie ja auch nicht gut tun könnte. Die jedem Kapitel reichlich beigefügten Übungsaufgaben sind für einen Anfänger nicht immer leicht; im Text werden sie nicht be­ nutzt. Nicht behandelt sind in diesem Buch die Analysis auf Mannig­ faltigkeiten (Satz von Stokes), die Morse-Theorie, die algebraische Topologie der Mannigfaltigkeiten und die Bordismentheorie. Wir hoffen aber, daß sich unser Buch als eine solide Grundlage für die nähere Bekanntschaft mit diesen weiterführenden Gebieten der Differentialtopologie erweisen wird. In diesem korrigierten Nachdruck sind zahlreiche kleine Versehen, die uns bekanntgeworden sind, berichtigt und einige Aufgaben hin­ zugekommen. Für Hinweise danken wir Kollegen und vielen interes­ sierten Lesern. Theodor Bröckt'r Regensburg, im August 1990 Klaus Jänich Inhaltsverzeichnis 1. Mannigfaltigkeiten und differenzierbare Strukturen. Ii 13 2. Der Tangentialraum ~ 3. Vektorraumbündel . 22 * 4. Lineare Algebra für Vektorraumbündel 34 ~ Lokale und tangentiale Eigenschaften. 45 5.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 9327

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Knotentheorie für Einsteiger

Author: Charles Livingston

Publisher: Springer-Verlag

ISBN: 3322802876

Category: Mathematics

Page: 214

View: 8051

Ein Jahrhundert Knotentheorie - Was ist ein Knoten - Kombinatorische Techniken - Geometrische Techniken - Algebraische Techniken - Geometrie, Algebra und das Alexander Polynom - Numerische Invarianten - Symmetrien von Knoten - Höherdimensionale Knotentheorie - Neue kombinatorische Techniken - Anhang 1: Knotentabelle - Anhang 2: Alexander Polynome Knotentheorie (als Teilgebiet der Topologie) ist zur Zeit sehr populär, vor allem wegen der vielen Anwendungen, nicht nur in der Mathematik, sondern auch in der Physik. Das Buch eignet sich als Grundlage für ein Seminar im Grundstudium Mathematik. Es richtet sich aber auch an Mathematiker und Naturwissenschaftler allgemein, die etwas über Knotentheorie lernen möchten, ohne auf Fachartikel und spezielle Monographien zurückgreifen zu müssen.

Analysis I

Author: Wolfgang Walter

Publisher: Springer-Verlag

ISBN: 3662057077

Category: Mathematics

Page: 388

View: 799

Aus den Besprechungen: "Wodurch unterscheidet sich das hiermit begonnene Lehrwerk der Analysis von zahlreichen anderen, zum Teil im gleichen Verlag erschienenen, exzellenten Werken dieser Art? Mehreres ist zu nennen: (1) die ausführliche Berücksichtigung des Warum und Woher, der historischen Gesichtspunkte also, die in unserem von der Ratio geprägten Zeitalter ohnehin immer zu kurz kommen; (2) die Anerkennung der Existenz des Computers. Der Autor verschließt sich nicht vor der Tatsache, daß die Computermathematik (hier vor allem verstanden als numerische Mathematik) oft interessante Anwendungen der klassischen Analysis bietet. Als weitere attraktive Merkmale des Buches nennen wir (3) die große Fülle von Beispielen und nicht-trivialen (aber lösbaren) Übungsaufgaben, sowie (4) der häufige Bezug zu den Anwendungen. Man denke: Sogar die Theorie der gewöhnlichen Differentialgleichungen, vor der manche Lehrbuchautoren eine unüberwindliche Scheu zu haben scheinen, ist gut lesbar dargestellt, mit vernünftigen Anwendungen. Alles in Allem kann das Buch jedem Studierenden der Mathematik wegen der Fülle des Gebotenen und wegen des geschickten didaktischen Aufbaus auf das Wärmste empfohlen werden." ZAMP #1

Mechanik

Von den Newtonschen Gesetzen zum deterministischen Chaos

Author: Florian Scheck

Publisher: Springer-Verlag

ISBN: 3662085933

Category: Science

Page: 431

View: 4467

Die vierte Auflage der Mechanik wurde in einigen Abschnitten ergänzt (z.B. zur Hamiltonschen Prinzipialfunktion und zum Aufstehkreisel) und auf Fehler durchgesehen, zudem wurden die Aufgaben überarbeitet, wobei nun alle vollständigen Lösungen mit aufgenommen wurden. Das wird all jenen zugute kommen, die diese umfassende Einführung in die Mechanik vorlesungsbegleitend oder zum Selbststudium verwenden wollen. Am Grundaufbau des Buches wurde nichts geändert: von elementarer Newtonscher Mechanik bis zur Diskussion von deterministischem Chaos und kontinuierlichen Systemen. Ein mathematischer Anhang und ein Wegweiser durch die Literatur runden das Buch ab.

Poisson-Geometrie und Deformationsquantisierung

Eine Einführung

Author: Stefan Waldmann

Publisher: Springer-Verlag

ISBN: 3540725180

Category: Mathematics

Page: 612

View: 1424

Erstmals als Lehrbuch, mit ausführlichen Beweisen und über 100 Aufgaben mit Lösungshinweisen. Der Autor entwickelt die Grundlagen zum Thema ausgehend von physikalischen Fragen. Die Poisson-Geometrie bietet den Rahmen für die geometrische Mechanik und stellt eine Verallgemeinerung der symplektischen Geometrie dar. Diese ist bedeutsam für mechanische Systeme mit Symmetrien und deren Phasenraumreduktion. Für die angestrebte Quantisierung sind die geometrischen Sachverhalte algebraisch gedeutet und entsprechend formuliert. Darauf aufbauend bietet die Deformationsquantisierung den Rahmen für die Quantisierung von Poisson-Mannigfaltigkeiten.