Differential Forms and Applications

Author: Manfredo P. Do Carmo

Publisher: Springer Science & Business Media

ISBN: 3642579515

Category: Mathematics

Page: 118

View: 9036

An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Differential Forms and Applications

Author: Manfredo P. Do Carmo

Publisher: Springer Science & Business Media

ISBN: 9783540576181

Category: Mathematics

Page: 118

View: 4912

This book uses differential forms to study local and global aspects of the differential geometry of surfaces. It introduces differentiable manifolds then presents Stokes' theorem. Applications consist in developing the method of moving frames of E. Cartan to study the local differential geometry of immersed surfaces in R3 and the intrinsic geometry of surfaces. Also covered is Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Differential Forms and Applications

Author: Manfredo P. Do Carmo

Publisher: Springer

ISBN: 9783540576181

Category: Mathematics

Page: 118

View: 645

An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Exterior Analysis

Using Applications of Differential Forms

Author: Erdogan Suhubi

Publisher: Elsevier

ISBN: 0124159281

Category: Mathematics

Page: 779

View: 1078

Exterior analysis uses differential forms (a mathematical technique) to analyze curves, surfaces, and structures. Exterior Analysis is a first-of-its-kind resource that uses applications of differential forms, offering a mathematical approach to solve problems in defining a precise measurement to ensure structural integrity. The book provides methods to study different types of equations and offers detailed explanations of fundamental theories and techniques to obtain concrete solutions to determine symmetry. It is a useful tool for structural, mechanical and electrical engineers, as well as physicists and mathematicians. Provides a thorough explanation of how to apply differential equations to solve real-world engineering problems Helps researchers in mathematics, science, and engineering develop skills needed to implement mathematical techniques in their research Includes physical applications and methods used to solve practical problems to determine symmetry

Differential Forms

A Complement to Vector Calculus

Author: Steven H. Weintraub

Publisher: Academic Press

ISBN: 9780127425108

Category: Mathematics

Page: 256

View: 5385

This text is one of the first to treat vector calculus using differential forms in place of vector fields and other outdated techniques. Geared towards students taking courses in multivariable calculus, this innovative book aims to make the subject more readily understandable. Differential forms unify and simplify the subject of multivariable calculus, and students who learn the subject as it is presented in this book should come away with a better conceptual understanding of it than those who learn using conventional methods. * Treats vector calculus using differential forms * Presents a very concrete introduction to differential forms * Develops Stokess theorem in an easily understandable way * Gives well-supported, carefully stated, and thoroughly explained definitions and theorems. * Provides glimpses of further topics to entice the interested student

Differential Forms in Algebraic Topology

Author: Raoul Bott,Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1475739516

Category: Mathematics

Page: 338

View: 5469

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 9249

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Differential Forms

Theory and Practice

Author: Steven H. Weintraub

Publisher: Elsevier

ISBN: 0123946174

Category: Mathematics

Page: 408

View: 3157

Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, 2nd Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice. Provides a solid theoretical basis of how to develop and apply differential forms to real research problems Includes computational methods to enable the reader to effectively use differential forms Introduces theoretical concepts in an accessible manner

A Geometric Approach to Differential Forms

Author: David Bachman

Publisher: Springer Science & Business Media

ISBN: 0817683046

Category: Mathematics

Page: 156

View: 1784

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Advanced Calculus

A Differential Forms Approach

Author: Harold M. Edwards

Publisher: Springer Science & Business Media

ISBN: 0817684123

Category: Mathematics

Page: 508

View: 3773

In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important feature...is that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition

Applied Differential Geometry

Author: William L. Burke

Publisher: Cambridge University Press

ISBN: 9780521269292

Category: Mathematics

Page: 414

View: 1086

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.

Manifolds, Tensor Analysis, and Applications

Author: Ralph Abraham,Jerrold E. Marsden,Tudor Ratiu

Publisher: Springer Science & Business Media

ISBN: 1461210291

Category: Mathematics

Page: 656

View: 9045

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 2924

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Differential and Riemannian Manifolds

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 1461241820

Category: Mathematics

Page: 364

View: 9303

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).

Differential Forms for Cartan-Klein Geometry

Author: Jose G. Vargas

Publisher: Abramis

ISBN: 9781845495299

Category: Science

Page: 270

View: 1324

This book lets readers understand differential geometry with differential forms. It is unique in providing detailed treatments of topics not normally found elsewhere, like the programs of B. Riemann and F. Klein in the second half of the 19th century, and their being superseded by E. Cartan in the twentieth. Several conservation laws are presented in a unified way. The Einstein 3-form rather than the Einstein tensor is emphasized; their relationship is shown. Examples are chosen for their pedagogic value. Numerous advanced comments are sprinkled throughout the text. The equations of structure are addressed in different ways. First, in affine and Euclidean spaces, where torsion and curvature simply happen to be zero. In a second approach, the 2-torus and the punctured plane and 2-sphere are endowed with the "Columbus connection," torsion becoming a concept which could have been understood even by sailors of the 15th century. Those equations are then presented as the breaking of integrability conditions for connection equations. Finally, a topological definition brings together the concepts of connection and equations of structure. These options should meet the needs and learning objectives of readers with very different backgrounds. Dr Howard E Brandt

Analysis and Algebra on Differentiable Manifolds

A Workbook for Students and Teachers

Author: Pedro M. Gadea,Jaime Muñoz Masqué,Ihor V. Mykytyuk

Publisher: Springer Science & Business Media

ISBN: 9400759525

Category: Mathematics

Page: 618

View: 3622

This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-mémoire, even for teachers and researchers on those topics. In this 2nd edition: • 76 new problems • a section devoted to a generalization of Gauss’ Lemma • a short novel section dealing with some properties of the energy of Hopf vector fields • an expanded collection of formulae and tables • an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra.

Manifolds, Tensors and Forms

Author: Paul Renteln

Publisher: Cambridge University Press

ISBN: 1107042194

Category: Science

Page: 340

View: 8503

Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

From Frenet to Cartan: The Method of Moving Frames

Author: Jeanne N. Clelland

Publisher: American Mathematical Soc.

ISBN: 1470429527

Category: Differential geometry -- Classical differential geometry -- Affine differential geometry

Page: 414

View: 5761

The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

Problems and Solutions in Differential Geometry, Lie Series, Differential Forms, Relativity and Applications

Author: N.A

Publisher: World Scientific Publishing Company

ISBN: 9813230843

Category: Science

Page: 296

View: 7706

This volume presents a collection of problems and solutions in differential geometry with applications. Both introductory and advanced topics are introduced in an easy-to-digest manner, with the materials of the volume being self-contained. In particular, curves, surfaces, Riemannian and pseudo-Riemannian manifolds, Hodge duality operator, vector fields and Lie series, differential forms, matrix-valued differential forms, Maurer–Cartan form, and the Lie derivative are covered. Readers will find useful applications to special and general relativity, Yang–Mills theory, hydrodynamics and field theory. Besides the solved problems, each chapter contains stimulating supplementary problems and software implementations are also included. The volume will not only benefit students in mathematics, applied mathematics and theoretical physics, but also researchers in the field of differential geometry. Request Inspection Copy