Author: Albert L. Rabenstein

Publisher: Academic Press

ISBN: 1483262375

Category: Mathematics

Page: 528

View: 2645

Skip to content
# Nothing Found

### Elementary Differential Equations with Linear Algebra

Elementary Differential Equations with Linear Algebra, Third Edition provides an introduction to differential equation and linear algebra. This book includes topics on numerical methods and Laplace transforms. Organized into nine chapters, this edition begins with an overview of an equation that involves a single unknown function of a single variable and some finite number of its derivatives. This text then examines a linear system of two equations with two unknowns. Other chapters consider a class of linear transformations that are defined on spaces of functions wherein these transformations are essential in the study of linear differential equations. This book discusses as well the linear differential equations whose coefficients are constant functions. The final chapter deals with the properties of Laplace transform in detail and examine as well the applications of Laplace transforms to differential equations. This book is a valuable resource for mathematicians, students, and research workers.

### Differential Equations & Linear Algebra

For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed-yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

### Ordinary Differential Equations and Linear Algebra: A Systems Approach

Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system.÷Ordinary Differential Equations and Linear Algebra: A Systems Approach÷systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.÷

### Applied Linear Algebra and Matrix Analysis

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

### Differentialgleichungen und ihre Anwendungen

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

### Differential Equations and Linear Algebra

For combined differential equations and linear algebra courses teaching students who have successfully completed three semesters of calculus. This complete introduction to both differential equations and linear algebra presents a carefully balanced and sound integration of the two topics. It promotes in-depth understanding rather than rote memorization, enabling students to fully comprehend abstract concepts and leave the course with a solid foundation in linear algebra. Flexible in format, it explains concepts clearly and logically with an abundance of examples and illustrations, without sacrificing level or rigor. A vast array of problems supports the material, with varying levels from which students/instructors can choose.

### Introduction to Linear Algebra and Differential Equations

Excellent introductory text for students with one year of calculus. Topics include complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions and boundary-value problems. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

### Differential Equations and Linear Algebra: Pearson New International Edition

For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed—yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

### Differential Equations with Applications and Historical Notes, Third Edition

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.

### Lineare Algebra

Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.

### Ordinary Differential Equations

Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of nonlinear equations. Requiring only a background in advanced calculus and linear algebra, the text is appropriate for advanced undergraduate and graduate students in mathematics, engineering, physics, chemistry, or biology. This third edition of a highly acclaimed textbook provides a detailed account of the Bendixson theory of solutions of two-dimensional nonlinear autonomous equations, which is a classical subject that has become more prominent in recent biological applications. By using the Poincaré method, it gives a unified treatment of the periodic solutions of perturbed equations. This includes the existence and stability of periodic solutions of perturbed nonautonomous and autonomous equations (bifurcation theory). The text shows how topological degree can be applied to extend the results. It also explains that using the averaging method to seek such periodic solutions is a special case of the use of the Poincaré method.

### The Numerical Solution of Ordinary and Partial Differential Equations

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

### Solutions Manual, Elementary Differential Equations with Boundary Value Problems, 3rd Edition

### Math Refresher for Scientists and Engineers

Expanded coverage of essential math, including integral equations,calculus of variations, tensor analysis, and specialintegrals Math Refresher for Scientists and Engineers, Third Edition isspecifically designed as a self-study guide to help busyprofessionals and students in science and engineering quicklyrefresh and improve the math skills needed to perform their jobsand advance their careers. The book focuses on practicalapplications and exercises that readers are likely to face in theirprofessional environments. All the basic math skills needed tomanage contemporary technology problems are addressed and presentedin a clear, lucid style that readers familiar with previouseditions have come to appreciate and value. The book begins with basic concepts in college algebra andtrigonometry, and then moves on to explore more advanced conceptsin calculus, linear algebra (including matrices), differentialequations, probability, and statistics. This Third Edition has beengreatly expanded to reflect the needs of today's professionals. Newmaterial includes: * A chapter on integral equations * A chapter on calculus of variations * A chapter on tensor analysis * A section on time series * A section on partial fractions * Many new exercises and solutions Collectively, the chapters teach most of the basic math skillsneeded by scientists and engineers. The wide range of topicscovered in one title is unique. All chapters provide a review ofimportant principles and methods. Examples, exercises, andapplications are used liberally throughout to engage the readersand assist them in applying their new math skills to actualproblems. Solutions to exercises are provided in an appendix. Whether to brush up on professional skills or prepare for exams,readers will find this self-study guide enables them to quicklymaster the math they need. It can additionally be used as atextbook for advanced-level undergraduates in physics andengineering.

### Calculus Deconstructed

A thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous experience of calculus techniques. This book can be used as a textbook for an undergraduate course on calculus or as a reference for self-study.

### Matrix Methods

Matrix Methods: Applied Linear Algebra, Third Edition, as a textbook, provides a unique and comprehensive balance between the theory and computation of matrices. The application of matrices is not just for mathematicians. The use by other disciplines has grown dramatically over the years in response to the rapid changes in technology. Matrix methods is the essence of linear algebra and is what is used to help physical scientists; chemists, physicists, engineers, statisticians, and economists solve real world problems. Applications like Markov chains, graph theory and Leontief Models are placed in early chapters Readability- The prerequisite for most of the material is a firm understanding of algebra New chapters on Linear Programming and Markov Chains Appendix referencing the use of technology, with special emphasis on computer algebra systems (CAS) MATLAB

### Linear Algebra

In this appealing and well-written text, Richard Bronson gives readers a substructure for a firm understanding of the abstract concepts of linear algebra and its applications. The author starts with the concrete and computational, and leads the reader to a choice of major applications (Markov chains, least-squares approximation, and solution of differential equations using Jordan normal form). The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced. Key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. With its inclusion of all the needed features, this text will be a pleasure for professionals, teachers, and students. - Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs - Gives computational algorithms for finding eigenvalues and eigenvectors - Provides a balanced approach to computation and theory - Superb motivation and writing - Excellent exercise sets, ranging from drill to theoretical/challeging - Useful and interesting applications not found in other introductory linear algebra texts

### A First Course in Differential Equations

The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.

Full PDF eBook Download Free

Author: Albert L. Rabenstein

Publisher: Academic Press

ISBN: 1483262375

Category: Mathematics

Page: 528

View: 2645

Author: Charles Henry Edwards,David E. Penney,David Calvis

Publisher: N.A

ISBN: 9780138141028

Category: Algebras, Linear

Page: 762

View: 2046

Author: Todd Kapitula

Publisher: SIAM

ISBN: 1611974097

Category: Mathematics

Page: 300

View: 5158

Author: Thomas S. Shores

Publisher: Springer Science & Business Media

ISBN: 9780387331959

Category: Mathematics

Page: 384

View: 1747

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642973418

Category: Mathematics

Page: 596

View: 2692

Author: Stephen W. Goode,Scott A. Annin

Publisher: Pearson Higher Ed

ISBN: 0130457949

Category: Mathematics

Page: 804

View: 4805

Author: John W. Dettman

Publisher: Courier Corporation

ISBN: 9780486651910

Category: Mathematics

Page: 404

View: 6882

Author: C. Henry Edwards,David E. Penney

Publisher: Pearson Higher Ed

ISBN: 1292052805

Category: Mathematics

Page: 696

View: 8412

Author: George F. Simmons

Publisher: CRC Press

ISBN: 1498702627

Category: Mathematics

Page: 764

View: 6145

Author: Gilbert Strang

Publisher: Springer-Verlag

ISBN: 3642556310

Category: Mathematics

Page: 656

View: 3896

*Introduction and Qualitative Theory, Third Edition*

Author: Jane Cronin

Publisher: CRC Press

ISBN: 1420014935

Category: Mathematics

Page: 408

View: 8036

Author: Granville Sewell

Publisher: World Scientific

ISBN: 9814635111

Category: Mathematics

Page: 348

View: 6773

Author: Edwards,David E. Penney

Publisher: N.A

ISBN: 9780132534284

Category: Boundary value problems

Page: 381

View: 2461

Author: John R. Fanchi

Publisher: John Wiley & Sons

ISBN: 0471791547

Category: Mathematics

Page: 330

View: 4967

*A Second Course in First-Year Calculus*

Author: Zbigniew H. Nitecki

Publisher: MAA

ISBN: 9780883857564

Category: Mathematics

Page: 491

View: 1913

*Applied Linear Algebra*

Author: Richard Bronson,Gabriel B. Costa

Publisher: Academic Press

ISBN: 9780080922256

Category: Mathematics

Page: 432

View: 8126

*An Introduction*

Author: Richard Bronson,Gabriel B. Costa

Publisher: Academic Press

ISBN: 0120887843

Category: Mathematics

Page: 503

View: 415

Author: J. David Logan

Publisher: Springer

ISBN: 3319178520

Category: Mathematics

Page: 369

View: 6060