Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1107149894

Category: Business & Economics

Page: 475

View: 9315

Skip to content
# Nothing Found

### Computer Age Statistical Inference

Take an exhilarating journey through the modern revolution in statistics with two of the ringleaders.

### Computer Age Statistical Inference

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

### Large-Scale Inference

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

### An Introduction to the Bootstrap

Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

### Statistical Learning with Sparsity

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

### Essential Statistical Inference

This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.

### Inferential Models

A New Approach to Sound Statistical Reasoning Inferential Models: Reasoning with Uncertainty introduces the authors’ recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaningful prior-free probabilistic inference at a high level. The book covers the foundational motivations for this new IM approach, the basic theory behind its calibration properties, a number of important applications, and new directions for research. It discusses alternative, meaningful probabilistic interpretations of some common inferential summaries, such as p-values. It also constructs posterior probabilistic inferential summaries without a prior and Bayes’ formula and offers insight on the interesting and challenging problems of conditional and marginal inference. This book delves into statistical inference at a foundational level, addressing what the goals of statistical inference should be. It explores a new way of thinking compared to existing schools of thought on statistical inference and encourages you to think carefully about the correct approach to scientific inference.

### Statistical Inference

Statistics is a subject with a vast field of application, involving problems which vary widely in their character and complexity.However, in tackling these, we use a relatively small core of central ideas and methods. This book attempts to concentrateattention on these ideas: they are placed in a general settingand illustrated by relatively simple examples, avoidingwherever possible the extraneous difficulties of complicatedmathematical manipulation.In order to compress the central body of ideas into a smallvolume, it is necessary to assume a fair degree of mathematicalsophistication on the part of the reader, and the book is intendedfor students of mathematics who are already accustomed tothinking in rather general terms about spaces and functions

### Information Theory and Statistical Learning

This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.

### Image Statistics in Visual Computing

To achieve the complex task of interpreting what we see, our brains rely on statistical regularities and patterns in visual data. Knowledge of these regularities can also be considerably useful in visual computing disciplines, such as computer vision, computer graphics, and image processing. The field of natural image statistics studies the regularities to exploit their potential and better understand human vision. With numerous color figures throughout, Image Statistics in Visual Computing covers all aspects of natural image statistics, from data collection to analysis to applications in computer graphics, computational photography, image processing, and art. The authors keep the material accessible, providing mathematical definitions where appropriate to help readers understand the transforms that highlight statistical regularities present in images. The book also describes patterns that arise once the images are transformed and gives examples of applications that have successfully used statistical regularities. Numerous references enable readers to easily look up more information about a specific concept or application. A supporting website also offers additional information, including descriptions of various image databases suitable for statistics. Collecting state-of-the-art, interdisciplinary knowledge in one source, this book explores the relation of natural image statistics to human vision and shows how natural image statistics can be applied to visual computing. It encourages readers in both academic and industrial settings to develop novel insights and applications in all disciplines that relate to visual computing.

### Statistical Inference

A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causality. To ensure a thorough understanding of all key concepts, Statistical Inference provides numerous examples and solutions along with complete and precise answers to many fundamental questions, including: How do we determine that a given dataset is actually a random sample? With what level of precision and reliability can a population sample be estimated? How are probabilities determined and are they the same thing as odds? How can we predict the level of one variable from that of another? What is the strength of the relationship between two variables? The book is organized to present fundamental statistical concepts first, with later chapters exploring more advanced topics and additional statistical tests such as Distributional Hypotheses, Multinomial Chi-Square Statistics, and the Chi-Square Distribution. Each chapter includes appendices and exercises, allowing readers to test their comprehension of the presented material. Statistical Inference: A Short Course is an excellent book for courses on probability, mathematical statistics, and statistical inference at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and practitioners who would like to develop further insights into essential statistical tools.

### Statistical Inference

Statistical inference is the foundation on which much of statistical practice is built. This book covers the topic at a level suitable for students and professionals who need to understand these foundations.

### GARCH Models

This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation and tests. The book also provides coverage of several extensions such as asymmetric and multivariate models and looks at financial applications. Key features: Provides up-to-date coverage of the current research in the probability, statistics and econometric theory of GARCH models. Numerous illustrations and applications to real financial series are provided. Supporting website featuring R codes, Fortran programs and data sets. Presents a large collection of problems and exercises. This authoritative, state-of-the-art reference is ideal for graduate students, researchers and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.

### All of Statistics

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

### Applied Statistical Inference

This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.

### Statistical Inference in Science

A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.

### The Elements of Statistical Learning

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

### In All Likelihood

Based on a course in the theory of statistics this text concentrates on what can be achieved using the likelihood/Fisherian method of taking account of uncertainty when studying a statistical problem. It takes the concept ot the likelihood as providing the best methods for unifying the demands of statistical modelling and the theory of inference. Every likelihood concept is illustrated by realistic examples, which are not compromised by computational problems. Examples range from a simile comparison of two accident rates, to complex studies that require generalised linear or semiparametric modelling. The emphasis is that the likelihood is not simply a device to produce an estimate, but an important tool for modelling. The book generally takes an informal approach, where most important results are established using heuristic arguments and motivated with realistic examples. With the currently available computing power, examples are not contrived to allow a closed analytical solution, and the book can concentrate on the statistical aspects of the data modelling. In addition to classical likelihood theory, the book covers many modern topics such as generalized linear models and mixed models, non parametric smoothing, robustness, the EM algorithm and empirical likelihood.

### Comparative Statistical Inference

This fully updated and revised third edition, presents a wide ranging, balanced account of the fundamental issues across the full spectrum of inference and decision-making. Much has happened in this field since the second edition was published: for example, Bayesian inferential procedures have not only gained acceptance but are often the preferred methodology. This book will be welcomed by both the student and practising statistician wishing to study at a fairly elementary level, the basic conceptual and interpretative distinctions between the different approaches, how they interrelate, what assumptions they are based on, and the practical implications of such distinctions. As in earlier editions, the material is set in a historical context to more powerfully illustrate the ideas and concepts. Includes fully updated and revised material from the successful second edition Recent changes in emphasis, principle and methodology are carefully explained and evaluated Discusses all recent major developments Particular attention is given to the nature and importance of basic concepts (probability, utility, likelihood etc) Includes extensive references and bibliography Written by a well-known and respected author, the essence of this successful book remains unchanged providing the reader with a thorough explanation of the many approaches to inference and decision making.

Full PDF eBook Download Free

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1107149894

Category: Business & Economics

Page: 475

View: 9315

*Algorithms, Evidence, and Data Science*

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 7394

*Empirical Bayes Methods for Estimation, Testing, and Prediction*

Author: Bradley Efron

Publisher: Cambridge University Press

ISBN: 1139492136

Category: Mathematics

Page: N.A

View: 9650

Author: Bradley Efron,R.J. Tibshirani

Publisher: CRC Press

ISBN: 9780412042317

Category: Mathematics

Page: 456

View: 1046

*The Lasso and Generalizations*

Author: Trevor Hastie,Robert Tibshirani,Martin Wainwright

Publisher: CRC Press

ISBN: 1498712177

Category: Business & Economics

Page: 367

View: 989

*Theory and Methods*

Author: Dennis D. Boos,L A Stefanski

Publisher: Springer Science & Business Media

ISBN: 1461448182

Category: Mathematics

Page: 568

View: 376

*Reasoning with Uncertainty*

Author: Ryan Martin,Chuanhai Liu

Publisher: CRC Press

ISBN: 1439886512

Category: Mathematics

Page: 256

View: 5592

Author: S.D. Silvey

Publisher: Routledge

ISBN: 135141450X

Category: Mathematics

Page: 192

View: 2975

Author: Frank Emmert-Streib,Matthias Dehmer

Publisher: Springer Science & Business Media

ISBN: 0387848150

Category: Computers

Page: 439

View: 3577

Author: Tania Pouli,Erik Reinhard,Douglas W. Cunningham

Publisher: CRC Press

ISBN: 1439874905

Category: Computers

Page: 372

View: 1131

*A Short Course*

Author: Michael J. Panik

Publisher: John Wiley & Sons

ISBN: 1118309804

Category: Mathematics

Page: 400

View: 3987

Author: Paul H. Garthwaite,I. T. Jolliffe,Byron Jones

Publisher: Oxford University Press on Demand

ISBN: 9780198572268

Category: Mathematics

Page: 328

View: 799

*Structure, Statistical Inference and Financial Applications*

Author: Christian Francq,Jean-Michel Zakoian

Publisher: John Wiley & Sons

ISBN: 1119957397

Category: Mathematics

Page: 504

View: 1819

*A Concise Course in Statistical Inference*

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 4102

*Likelihood and Bayes*

Author: Leonhard Held,Daniel Sabanés Bové

Publisher: Springer Science & Business Media

ISBN: 3642378870

Category: Mathematics

Page: 376

View: 6845

Author: D.A. Sprott

Publisher: Springer Science & Business Media

ISBN: 0387227660

Category: Mathematics

Page: 248

View: 8907

*Data Mining, Inference, and Prediction*

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 9149

*Statistical Modelling and Inference Using Likelihood*

Author: Yudi Pawitan

Publisher: OUP Oxford

ISBN: 0191650587

Category: Mathematics

Page: 544

View: 395

Author: Vic Barnett

Publisher: John Wiley & Sons

ISBN: 0470317795

Category: Mathematics

Page: 410

View: 6564