Author: Jichun Li,Yi-Tung Chen

Publisher: CRC Press

ISBN: 9781420089059

Category: Mathematics

Page: 378

View: 3171

Skip to content
# Nothing Found

### Computational Partial Differential Equations Using MATLAB

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical methods, such as the high-order compact difference method and the radial basis function meshless method. Helps Students Better Understand Numerical Methods through Use of MATLAB® The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions. All the Material Needed for a Numerical Analysis Course Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

### Computational Partial Differential Equations

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

### Advanced Topics in Computational Partial Differential Equations

A gentle introduction to advanced topics such as parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to ‘compute’ solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment - some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through to discretization methods, algorithms, software design, verification, and computational examples. Suitable for readers with a background in basic finite element and finite difference methods for partial differential equations.

### Computational Methods for PDE in Mechanics

- An application-oriented introduction to computational numerical methods for PDE - Complete with numerous exercise sets and solutions - Includes Windows programs in C++ language

### Adaptive Computational Methods for Partial Differential Equations

List of participants; Elliptic equations; Parabolic equations; Hyperbolic equations.

### Partial Differential Equations for Computational Science

This book will have strong appeal to interdisciplinary audiences, particularly in regard to its treatments of fluid mechanics, heat equations, and continuum mechanics. There is also a heavy focus on vector analysis. Maple examples, exercises, and an appendix is also included.

### Introduction to Partial Differential Equations

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.

### Computational Optimization of Systems Governed by Partial Differential Equations

This book provides a bridge between continuous optimization and PDE modelling and focuses on the numerical solution of the corresponding problems. Intended for graduate students in PDE-constrained optimization, it is also suitable as an introduction for researchers in scientific computing or optimization.

### Computational Methods in Partial Differential Equations

October 2002

### Partielle Differentialgleichungen und numerische Methoden

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

### The Numerical Solution of Ordinary and Partial Differential Equations

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

### Numerische Behandlung partieller Differentialgleichungen

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

### Numerical Partial Differential Equations: Finite Difference Methods

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

### Computational Methods for Partial Differential Equations

### Adaptive Methods for Partial Differential Equations

"Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.

### Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

### Partial Differential Equations with Numerical Methods

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

### The finite difference method in partial differential equations

Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.

Full PDF eBook Download Free

Author: Jichun Li,Yi-Tung Chen

Publisher: CRC Press

ISBN: 9781420089059

Category: Mathematics

Page: 378

View: 3171

*Numerical Methods and Diffpack Programming*

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

ISBN: 3662011700

Category: Mathematics

Page: 685

View: 2329

*Numerical Methods and Diffpack Programming*

Author: Hans Petter Langtangen,Aslak Tveito

Publisher: Springer Science & Business Media

ISBN: 3642182372

Category: Mathematics

Page: 663

View: 9760

Author: Berardino D'Acunto

Publisher: World Scientific

ISBN: 9789812560377

Category: Science

Page: 278

View: 2984

Author: Ivo Babushka,Jagdish Chandra,Joseph E. Flaherty

Publisher: SIAM

ISBN: 9780898711912

Category: Mathematics

Page: 251

View: 1002

*With Maple and Vector Analysis*

Author: David Betounes

Publisher: Springer Science & Business Media

ISBN: 9780387983004

Category: Mathematics

Page: 517

View: 5383

*A Computational Approach*

Author: Aslak Tveito,Ragnar Winther

Publisher: Springer Science & Business Media

ISBN: 0387227733

Category: Mathematics

Page: 392

View: 6956

Author: Alfio Borzi,Volker Schulz

Publisher: SIAM

ISBN: 1611972043

Category: Mathematics

Page: 282

View: 6625

Author: Andrew R. Mitchell,Andrew Ronald Mitchell

Publisher: John Wiley & Sons

ISBN: N.A

Category: Differential equations, Partial

Page: 255

View: 9465

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 6830

Author: Granville Sewell

Publisher: World Scientific

ISBN: 9814635111

Category: Mathematics

Page: 348

View: 7223

Author: Christian Großmann,Hans-Görg Roos

Publisher: Springer-Verlag

ISBN: 9783519220893

Category: Mathematics

Page: 572

View: 4499

Author: J.W. Thomas

Publisher: Springer Science & Business Media

ISBN: 1489972781

Category: Mathematics

Page: 437

View: 5428

Author: E. H. Twizell

Publisher: Ellis Horwood

ISBN: N.A

Category: Differential equations, Partial

Page: 276

View: 8890

Author: Ivo Babushka,Jagdish Chandra,Joseph E. Flaherty

Publisher: SIAM

ISBN: 9780898712421

Category: Mathematics

Page: 265

View: 5480

*An Introduction*

Author: Vitoriano Ruas

Publisher: John Wiley & Sons

ISBN: 1119111374

Category: Technology & Engineering

Page: 376

View: 8367

Author: Stig Larsson,Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3540887059

Category: Mathematics

Page: 262

View: 6714

Author: Andrew R. Mitchell,David Francis Griffiths

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Mathematics

Page: 272

View: 2818