Numerical Methods for Partial Differential Equations

Finite Difference and Finite Volume Methods

Author: Sandip Mazumder

Publisher: Academic Press

ISBN: 0128035048

Category: Technology & Engineering

Page: 484

View: 5267

Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Partial Differential Equations with Numerical Methods

Author: Stig Larsson,Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3540887059

Category: Mathematics

Page: 262

View: 2794

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Methods for Partial Differential Equations

An Introduction

Author: Vitoriano Ruas

Publisher: John Wiley & Sons

ISBN: 1119111374

Category: Technology & Engineering

Page: 376

View: 1050

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

Mathematical and Numerical Methods for Partial Differential Equations

Applications for Engineering Sciences

Author: Joël Chaskalovic

Publisher: Springer

ISBN: 3319035630

Category: Mathematics

Page: 358

View: 4172

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.

Numerical Methods for Partial Differential Equations

Author: G. Evans,J. Blackledge,P. Yardley

Publisher: Springer Science & Business Media

ISBN: 1447103777

Category: Mathematics

Page: 290

View: 4848

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii

Publisher: CRC Press

ISBN: 1466581492

Category: Mathematics

Page: 1609

View: 1233

Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Applied Partial Differential Equations

Author: Paul DuChateau,David W. Zachmann

Publisher: Courier Corporation

ISBN: 9780486419763

Category: Mathematics

Page: 620

View: 3257

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.

Recent Advances in Numerical Methods for Partial Differential Equations and Applications

Proceedings of the 2001 John H. Barrett Memorial Lectures, Trends in Computational Mathematics, May 10-12, 2001, the University of Tennessee, Knoxville, TN

Author: Xiaobing Feng,Tim P. Schulze

Publisher: American Mathematical Soc.

ISBN: 082182970X

Category: Mathematics

Page: 177

View: 8636

An emerging field over the past 15 years, computational mathematics is a vast area which has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. Compiled here are six of nine in-depth survey papers with an expository discussion on computational mathematics that were presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. They focus on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Each of the lecturers is a leading researcher in the field of computational mathematics and its applications. This book will be a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists. Prior knowledge of partial differential equations and their numerical methods is helpful.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 3130

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Computational Partial Differential Equations

Numerical Methods and Diffpack Programming

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

ISBN: 3662011700

Category: Mathematics

Page: 685

View: 2673

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Numerical Methods for PDEs

State of the Art Techniques

Author: Daniele Antonio Di Pietro,Alexandre Ern,Luca Formaggia

Publisher: Springer

ISBN: 9783319946757

Category: Mathematics

Page: 312

View: 4649

This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.

Computational Partial Differential Equations Using MATLAB

Author: Jichun Li,Yi-Tung Chen

Publisher: CRC Press

ISBN: 9781420089059

Category: Mathematics

Page: 378

View: 3717

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical methods, such as the high-order compact difference method and the radial basis function meshless method. Helps Students Better Understand Numerical Methods through Use of MATLAB® The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions. All the Material Needed for a Numerical Analysis Course Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

Finite Difference Methods in Heat Transfer

Author: Necati Ozisik

Publisher: CRC Press

ISBN: 9780849324918

Category: Science

Page: 432

View: 6888

Finite Difference Methods in Heat Transfer presents a clear, step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications. The finite difference techniques presented apply to the numerical solution of problems governed by similar differential equations encountered in many other fields. Fundamental concepts are introduced in an easy-to-follow manner. Representative examples illustrate the application of a variety of powerful and widely used finite difference techniques. The physical situations considered include the steady state and transient heat conduction, phase-change involving melting and solidification, steady and transient forced convection inside ducts, free convection over a flat plate, hyperbolic heat conduction, nonlinear diffusion, numerical grid generation techniques, and hybrid numerical-analytic solutions.

Numerische Strömungsmechanik

Author: Joel H. Ferziger,Milovan Peric

Publisher: Springer-Verlag

ISBN: 3540682287

Category: Science

Page: 509

View: 572

Das Buch bietet einen Überblick über die numerischen Methoden zur Lösung strömungsmechanischer Probleme. Die in der Praxis meistgenutzten Methoden werden detailliert beschrieben. Behandelt werden auch fortgeschrittene Methoden, wie die Simulation von Turbulenzen und Parallel-Verarbeitung. Das Buch beschreibt die Grundlagen und Prinzipien der verschiedenen Methoden. Numerische Genauigkeit und Abschätzung sowie Fehlerreduktion werden detailliert mit vielen Beispielen behandelt. Alle Computercodes sind über den Server ftp.springer.de des Springer-Verlages erhältlich (Internet).

Numerical Methods for Partial Differential Equations

Author: William F. Ames

Publisher: Academic Press

ISBN: 1483262421

Category: Mathematics

Page: 380

View: 2690

Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

Lectures on Advanced Computational Methods in Mechanics

Author: Johannes Kraus,Ulrich Langer

Publisher: Walter de Gruyter

ISBN: 3110927098

Category: Mathematics

Page: 235

View: 7882

This book contains four survey papers related to different topics in computational mechanics, in particular (1) novel discretization and solver techniques in mechanics and (2) inverse, control, and optimization problems in mechanics. These topics were considered in lectures, seminars, tutorials, and workshops at the Special Semester on Computational Mechanics held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria, in December 2005.

Numerical Methods for Differential Equations

A Computational Approach

Author: J.R. Dormand

Publisher: CRC Press

ISBN: 9780849394331

Category: Mathematics

Page: 384

View: 2139

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.