Author: Berardino D'Acunto

Publisher: World Scientific

ISBN: 9789812560377

Category: Science

Page: 278

View: 7695

Skip to content
# Nothing Found

### Computational Methods for PDE in Mechanics

- An application-oriented introduction to computational numerical methods for PDE - Complete with numerous exercise sets and solutions - Includes Windows programs in C++ language

### Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

### Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

### Partial Differential Equations with Numerical Methods

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

### Computational Partial Differential Equations

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

### Mathematical and Numerical Methods for Partial Differential Equations

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.

### Numerical Methods for Partial Differential Equations

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

### Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

### Computational Partial Differential Equations Using MATLAB

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical methods, such as the high-order compact difference method and the radial basis function meshless method. Helps Students Better Understand Numerical Methods through Use of MATLAB® The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions. All the Material Needed for a Numerical Analysis Course Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

### Partial Differential Equations

For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene?t from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr ̈ odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier–Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve ‘constructively’ the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics,includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations.

### Computational Methods in Engineering

Computational Methods in Engineering brings to light the numerous uses of numerical methods in engineering. It clearly explains the application of these methods mathematically and practically, emphasizing programming aspects when appropriate. By approaching the cross-disciplinary topic of numerical methods with a flexible approach, Computational Methods in Engineering encourages a well-rounded understanding of the subject. This book's teaching goes beyond the text—detailed exercises (with solutions), real examples of numerical methods in real engineering practices, flowcharts, and MATLAB codes all help you learn the methods directly in the medium that suits you best. Balanced discussion of mathematical principles and engineering applications Detailed step-by-step exercises and practical engineering examples to help engineering students and other readers fully grasp the concepts Concepts are explained through flowcharts and simple MATLAB codes to help you develop additional programming skills

### Numerical Solution of Partial Differential Equations in Science and Engineering

From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

### Numerical Methods for Nonlinear Partial Differential Equations

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

### Numerical Methods for PDEs

This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.

### Numerical and Computer Methods in Structural Mechanics

Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.

### Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

### Recent Advances in Numerical Methods for Partial Differential Equations and Applications

This book is derived from lectures presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. The topic was computational mathematics, focusing on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Compiled here are articles from six of nine speakers. Each of them is a leading researcher in the field of computational mathematics and its applications. A vast area that has been coming into its own over the past 15 years, computational mathematics has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. With the aid of powerful high performance computers, numerical simulation of physical phenomena is the only feasible method for analyzing many types of important phenomena, joining experimentation and theoretical analysis as the third method of scientific investigation. The three aspects: applications, theory, and computer implementation comprise a comprehensive overview of the topic. Leading lecturers were Mary Wheeler on applications, Jinchao Xu on theory, and David Keyes on computer implementation. Following the tradition of the Barrett Lectures, these in-depth articles and expository discussions make this book a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists.

### Numerical Methods for Conservation Laws

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

### Applied Partial Differential Equations

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.

### Computational Methods in Plasma Physics

Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency, and scaling properties. He focuses on mathematical models where the plasma is treated as a conducting fluid, since this is the most mature plasma model and most applicable to experiments. The book also emphasizes toroidal confinement geometries, particularly the tokamak—a very successful configuration for confining a high-temperature plasma. Many of the basic numerical techniques presented are also appropriate for equations encountered in a higher-dimensional phase space. One of the most challenging research areas in modern science is to develop suitable algorithms that lead to stable and accurate solutions that can span relevant time and space scales. This book provides an excellent working knowledge of the algorithms used by the plasma physics community, helping readers on their way to more advanced study.

Full PDF eBook Download Free

Author: Berardino D'Acunto

Publisher: World Scientific

ISBN: 9789812560377

Category: Science

Page: 278

View: 7695

*Finite Difference and Finite Volume Methods*

Author: Sandip Mazumder

Publisher: Academic Press

ISBN: 0128035048

Category: Technology & Engineering

Page: 484

View: 5256

*An Introduction*

Author: Vitoriano Ruas

Publisher: John Wiley & Sons

ISBN: 1119111374

Category: Technology & Engineering

Page: 376

View: 4556

Author: Stig Larsson,Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3540887059

Category: Mathematics

Page: 262

View: 1632

*Numerical Methods and Diffpack Programming*

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

ISBN: 3662011700

Category: Mathematics

Page: 685

View: 8426

*Applications for Engineering Sciences*

Author: Joël Chaskalovic

Publisher: Springer

ISBN: 3319035630

Category: Mathematics

Page: 358

View: 894

Author: G. Evans,J. Blackledge,P. Yardley

Publisher: Springer Science & Business Media

ISBN: 1447103777

Category: Mathematics

Page: 290

View: 3118

Author: William F. Ames

Publisher: Academic Press

ISBN: 1483262421

Category: Mathematics

Page: 380

View: 6393

Author: Jichun Li,Yi-Tung Chen

Publisher: CRC Press

ISBN: 9781420089059

Category: Mathematics

Page: 378

View: 3817

*Modelling and Numerical Simulation*

Author: Roland Glowinski,Pekka Neittaanmäki

Publisher: Springer Science & Business Media

ISBN: 1402087586

Category: Science

Page: 292

View: 3021

Author: S.P. Venkateshan,Prasanna Swaminathan

Publisher: Elsevier

ISBN: 0124167039

Category: Computers

Page: 692

View: 5507

Author: Leon Lapidus,George F. Pinder

Publisher: John Wiley & Sons

ISBN: 9780471098669

Category: Mathematics

Page: 677

View: 599

Author: Sören Bartels

Publisher: Springer

ISBN: 3319137972

Category: Mathematics

Page: 393

View: 6410

*State of the Art Techniques*

Author: Daniele Antonio Di Pietro,Alexandre Ern,Luca Formaggia

Publisher: Springer

ISBN: 9783319946757

Category: Mathematics

Page: 312

View: 8263

Author: Steven J. Fenves,Nicholas Perrone,Arthur R. Robinson

Publisher: Elsevier

ISBN: 1483272540

Category: Technology & Engineering

Page: 698

View: 2164

Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii

Publisher: CRC Press

ISBN: 1466581492

Category: Mathematics

Page: 1609

View: 6456

*Proceedings of the 2001 John H. Barrett Memorial Lectures, Trends in Computational Mathematics, May 10-12, 2001, the University of Tennessee, Knoxville, TN*

Author: Xiaobing Feng,Tim P. Schulze

Publisher: American Mathematical Soc.

ISBN: 9780821856420

Category: Mathematics

Page: 177

View: 3562

Author: LEVEQUE

Publisher: Birkhäuser

ISBN: 3034851162

Category: Juvenile Nonfiction

Page: 214

View: 4317

Author: Paul DuChateau,David W. Zachmann

Publisher: Courier Corporation

ISBN: 9780486419763

Category: Mathematics

Page: 620

View: 7015

Author: Stephen Jardin

Publisher: CRC Press

ISBN: 9781439810958

Category: Science

Page: 372

View: 7131