Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities

Author: Marat Akhmet,Ardak Kashkynbayev

Publisher: Springer

ISBN: 9811031800

Category: Mathematics

Page: 166

View: 2024

This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.

Stability and Bifurcation Theory for Non-Autonomous Differential Equations

Cetraro, Italy 2011, Editors: Russell Johnson, Maria Patrizia Pera

Author: Anna Capietto,Peter Kloeden,Jean Mawhin,Sylvia Novo,Miguel Ortega

Publisher: Springer

ISBN: 3642329063

Category: Mathematics

Page: 303

View: 8986

This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.

Bifurcation and Chaos in Discontinuous and Continuous Systems

Author: Michal Fečkan

Publisher: Springer Science & Business Media

ISBN: 3642182690

Category: Science

Page: 378

View: 4170

"Bifurcation and Chaos in Discontinuous and Continuous Systems" provides rigorous mathematical functional-analytical tools for handling chaotic bifurcations along with precise and complete proofs together with concrete applications presented by many stimulating and illustrating examples. A broad variety of nonlinear problems are studied involving difference equations, ordinary and partial differential equations, differential equations with impulses, piecewise smooth differential equations, differential and difference inclusions, and differential equations on infinite lattices as well. This book is intended for mathematicians, physicists, theoretically inclined engineers and postgraduate students either studying oscillations of nonlinear mechanical systems or investigating vibrations of strings and beams, and electrical circuits by applying the modern theory of bifurcation methods in dynamical systems. Dr. Michal Fečkan is a Professor at the Department of Mathematical Analysis and Numerical Mathematics on the Faculty of Mathematics, Physics and Informatics at the Comenius University in Bratislava, Slovakia. He is working on nonlinear functional analysis, bifurcation theory and dynamical systems with applications to mechanics and vibrations.

Topological Dynamics

Author: Walter Helbig Gottschalk,Gustav Arnold Hedlund

Publisher: American Mathematical Soc.

ISBN: 9780821874691

Category: Mathematics

Page: 167

View: 4315


Attractivity and Bifurcation for Nonautonomous Dynamical Systems

Author: Martin Rasmussen

Publisher: Springer Science & Business Media

ISBN: 3540712240

Category: Mathematics

Page: 212

View: 3995

Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions, which are useful to describe the global asymptotic behavior of systems on compact phase spaces. Furthermore, methods from the qualitative theory for linear and nonlinear systems are derived, and nonautonomous counterparts of the classical one-dimensional autonomous bifurcation patterns are developed.

Topological Dimension and Dynamical Systems

Author: Michel Coornaert

Publisher: Springer

ISBN: 3319197940

Category: Mathematics

Page: 233

View: 9705

Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Exploring ODEs

Author: Lloyd N. Trefethen,Ásgeir Birkisson,Tobin A. Driscoll

Publisher: SIAM

ISBN: 1611975166

Category: Mathematics

Page: 335

View: 1587

Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration.

K-Theory for Group C*-Algebras and Semigroup C*-Algebras

Author: Joachim Cuntz,Siegfried Echterhoff,Xin Li,Guoliang Yu

Publisher: Birkhäuser

ISBN: 3319599151

Category: Mathematics

Page: 322

View: 2858

This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.

Ordinary Differential Equations and Mechanical Systems

Author: Jan Awrejcewicz

Publisher: Springer

ISBN: 3319076590

Category: Mathematics

Page: 614

View: 5162

This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.

Problem-Solving Strategies

Author: Arthur Engel

Publisher: Springer Science & Business Media

ISBN: 0387226419

Category: Mathematics

Page: 403

View: 2079

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.

Dynamics and Bifurcations of Non-Smooth Mechanical Systems

Author: Remco Leine,Henk Nijmeijer

Publisher: Springer Science & Business Media

ISBN: 3540443983

Category: Mathematics

Page: 236

View: 535

This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.

The Stability of Dynamical Systems

Author: J. P. LaSalle

Publisher: SIAM

ISBN: 9781611970432

Category: Difference equations

Page: 73

View: 8762

An introduction to aspects of the theory of dynamial systems based on extensions of Liapunov's direct method. The main ideas and structure for the theory are presented for difference equations and for the analogous theory for ordinary differential equations and retarded functional differential equations. The latest results on invariance properties for non-autonomous time-varying systems processes are presented for difference and differential equations.

Dynamics and Bifurcations

Author: Jack K. Hale,Hüseyin Kocak

Publisher: Springer Science & Business Media

ISBN: 1461244269

Category: Mathematics

Page: 574

View: 1214

In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.

Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis

Fractional Dynamics, Network Dynamics, Classical Dynamics and Fractal Dynamics with Their Numerical Simulations

Author: Changpin Li,Yujiang Wu,Ruisong Ye

Publisher: World Scientific

ISBN: 981443647X

Category: Mathematics

Page: 416

View: 5453

Nonlinear dynamics is still a hot and challenging topic. In this edited book, we focus on fractional dynamics, infinite dimensional dynamics defined by the partial differential equation, network dynamics, fractal dynamics, and their numerical analysis and simulation. Fractional dynamics is a new topic in the research field of nonlinear dynamics which has attracted increasing interest due to its potential applications in the real world, such as modeling memory processes and materials. In this part, basic theory for fractional differential equations and numerical simulations for these equations will be introduced and discussed. In the infinite dimensional dynamics part, we emphasize on numerical calculation and theoretical analysis, including constructing various numerical methods and computing the corresponding limit sets, etc. In the last part, we show interest in network dynamics and fractal dynamics together with numerical simulations as well as their applications. Contents:Gronwall Inequalities (Fanhai Zeng, Jianxiong Cao and Changpin Li)Existence and Uniqueness of the Solutions to the Fractional Differential Equations (Yutian Ma, Fengrong Zhang and Changpin Li)Finite Element Methods for Fractional Differential Equations (Changpin Li and Fanhai Zeng)Fractional Step Method for the Nonlinear Conservation Laws with Fractional Dissipation (Can Li and Weihua Deng)Error Analysis of Spectral Method for the Space and Time Fractional Fokker–Planck Equation (Tinggang Zhao and Haiyan Xuan)A Discontinuous Finite Element Method for a Type of Fractional Cauchy Problem (Yunying Zheng)Asymptotic Analysis of a Singularly Perturbed Parabolic Problem in a General Smooth Domain (Yu-Jiang Wu, Na Zhang and Lun-Ji Song)Incremental Unknowns Methods for the ADI and ADSI Schemes (Ai-Li Yang, Yu-Jiang Wu and Zhong-Hua Yang)Stability of a Collocated FV Scheme for the 3D Navier–Stokes Equations (Xu Li and Shu-qin Wang)Computing the Multiple Positive Solutions to p–Henon Equation on the Unit Square (Zhaoxiang Li and Zhonghua Yang)Multilevel WBIUs Methods for Reaction–Diffusion Equations (Yang Wang, Yu-Jiang Wu and Ai-Li Yang)Models and Dynamics of Deterministically Growing Networks (Weigang Sun, Jingyuan Zhang and Guanrong Chen)On Different Approaches to Synchronization of Spatiotemporal Chaos in Complex Networks (Yuan Chai and Li-Qun Chen)Chaotic Dynamical Systems on Fractals and Their Applications to Image Encryption (Ruisong Ye, Yuru Zou and Jian Lu)Planar Crystallographic Symmetric Tiling Patterns Generated From Invariant Maps (Ruisong Ye, Haiying Zhao and Yuanlin Ma)Complex Dynamics in a Simple Two-Dimensional Discrete System (Huiqing Huang and Ruisong Ye)Approximate Periodic Solutions of Damped Harmonic Oscillators with Delayed Feedback (Qian Guo)The Numerical Methods in Option Pricing Problem (Xiong Bo)Synchronization and Its Control Between Two Coupled Networks (Yongqing Wu and Minghai Lü) Readership: Senior undergraduates, postgraduates and experts in nonlinear dynamics with numerical analysis. Keywords:Fractional Dynamics;Infinite Dimensional Dynamics;Network Dynamics;Fractal DynamicsKey Features:The topics in this edited book are very hot and highly impressiveIssues and methods of such topics in this edited book have not been made available yetThe present edited book is suitable for various levels of researchers, such as senior undergraduates, postgraduates, and experts

Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS

Author: Pierpaolo Esposito,Nassif Ghoussoub,Yujin Guo

Publisher: American Mathematical Soc.

ISBN: 0821849573

Category: Mathematics

Page: 318

View: 9897

Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing ``electrostatically actuated'' MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems--where the stationary MEMS models fit--are a well-developed field of PDEs, the type of inverse square nonlinearity that appears here helps shed a new light on the class of singular supercritical problems and their specific challenges. Besides the practical considerations, the model is a rich source of interesting mathematical phenomena. Numerics, formal asymptotic analysis, and ODE methods give lots of information and point to many conjectures. However, even in the simplest idealized versions of electrostatic MEMS, one essentially needs the full available arsenal of modern PDE techniques to do the required rigorous mathematical analysis, which is the main objective of this volume. This monograph could therefore be used as an advanced graduate text for a motivational introduction to many recent methods of nonlinear analysis and PDEs through the analysis of a set of equations that have enormous practical significance.

Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 8657

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

Nonautonomous Dynamical Systems

Author: Peter E. Kloeden,Martin Rasmussen

Publisher: American Mathematical Soc.

ISBN: 0821868713

Category: Mathematics

Page: 264

View: 9941

The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Theory and Applications of Fractional Differential Equations

Author: Anatoliĭ Aleksandrovich Kilbas,H. M. Srivastava,Juan J. Trujillo

Publisher: Elsevier

ISBN: 9780444518323

Category: Mathematics

Page: 523

View: 3796

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.