*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 7028

Skip to content
# Nothing Found

### Basic Stochastic Processes

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

### Basic Stochastic Processes

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

### Basic Stochastic Processes

This book presents basic stochastic processes, stochastic calculus including Lévy processes on one hand, and Markov and Semi Markov models on the other. From the financial point of view, essential concepts such as the Black and Scholes model, VaR indicators, actuarial evaluation, market values, fair pricing play a central role and will be presented. The authors also present basic concepts so that this series is relatively self-contained for the main audience formed by actuaries and particularly with ERM (enterprise risk management) certificates, insurance risk managers, students in Master in mathematics or economics and people involved in Solvency II for insurance companies and in Basel II and III for banks.

### Basics of Applied Stochastic Processes

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

### Basic stochastic processes

### Stochastic Processes

Most introductory textbooks on stochastic processes which cover standard topics such as Poisson process, Brownian motion, renewal theory and random walks deal inadequately with their applications. Written in a simple and accessible manner, this book addresses that inadequacy and provides guidelines and tools to study the applications. The coverage includes research developments in Markov property, martingales, regenerative phenomena and Tauberian theorems, and covers measure theory at an elementary level.

### Essentials of Stochastic Processes

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

### A First Course in Stochastic Processes

A First Course in Stochastic Processes focuses on several principal areas of stochastic processes and the diversity of applications of stochastic processes, including Markov chains, Brownian motion, and Poisson processes. The publication first takes a look at the elements of stochastic processes, Markov chains, and the basic limit theorem of Markov chains and applications. Discussions focus on criteria for recurrence, absorption probabilities, discrete renewal equation, classification of states of a Markov chain, and review of basic terminologies and properties of random variables and distribution functions. The text then examines algebraic methods in Markov chains and ratio theorems of transition probabilities and applications. The manuscript elaborates on the sums of independent random variables as a Markov chain, classical examples of continuous time Markov chains, and continuous time Markov chains. Topics include differentiability properties of transition probabilities, birth and death processes with absorbing states, general pure birth processes and Poisson processes, and recurrence properties of sums of independent random variables. The book then ponders on Brownian motion, compounding stochastic processes, and deterministic and stochastic genetic and ecological processes. The publication is a valuable source of information for readers interested in stochastic processes.

### Stochastic Processes

This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black–Scholes formula for the pricing of derivatives in financial mathematics, the Kalman–Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

### An Introduction to Probability and Stochastic Processes

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

### Probability and Stochastic Processes

This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first seven chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.

### Markov Processes for Stochastic Modeling

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. Presents both the theory and applications of the different aspects of Markov processes Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.

### Applied Stochastic Processes

Applied Stochastic Processes presents a concise, graduate-level treatment of the subject, emphasizing applications and practical computation. It also establishes the complete mathematical theory in an accessible way. After reviewing basic probability, the text covers Poisson processes, renewal processes, discrete- and continuous-time Markov chains, and Brownian motion. It also offers an introduction to stochastic differential equations. While the main applications described are queues, the book also considers other examples, such as the mathematical model of a single stock market. With exercises in most sections, this book provides a clear, practical introduction for beginning graduate students. The material is presented in a straightforward manner using short, motivating examples. In addition, the author develops the mathematical theory with a strong emphasis on probability intuition.

### An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

### Stochastic Processes in Science, Engineering and Finance

This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.

### Introduction to Probability and Stochastic Processes with Applications

An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.

### Introduction to Stochastic Processes, Second Edition

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

### Adventures in Stochastic Processes

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.

### An Introduction to Stochastic Processes with Applications to Biology, Second Edition

An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes. New to the Second Edition A new chapter on stochastic differential equations that extends the basic theory to multivariate processes, including multivariate forward and backward Kolmogorov differential equations and the multivariate Itô’s formula The inclusion of examples and exercises from cellular and molecular biology Double the number of exercises and MATLAB® programs at the end of each chapter Answers and hints to selected exercises in the appendix Additional references from the literature This edition continues to provide an excellent introduction to the fundamental theory of stochastic processes, along with a wide range of applications from the biological sciences. To better visualize the dynamics of stochastic processes, MATLAB programs are provided in the chapter appendices.

Full PDF eBook Download Free

*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 7028

*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 9783540761754

Category: Mathematics

Page: 225

View: 7332

Author: Pierre Devolder,Jacques Janssen,Raimondo Manca

Publisher: John Wiley & Sons

ISBN: 1119184576

Category: Mathematics

Page: 326

View: 9881

Author: Richard Serfozo

Publisher: Springer Science & Business Media

ISBN: 3540893326

Category: Mathematics

Page: 443

View: 7198

*the Mark Kac lectures*

Author: Reza Iranpour,Paul Chacon

Publisher: Macmillan Publishing Company

ISBN: N.A

Category: Mathematics

Page: 258

View: 6045

*Basic Theory and Its Applications*

Author: Narahari Umanath Prabhu

Publisher: World Scientific

ISBN: 9812706267

Category: Mathematics

Page: 341

View: 7691

Author: Richard Durrett

Publisher: Springer

ISBN: 3319456148

Category: Mathematics

Page: 275

View: 4576

Author: Samuel Karlin

Publisher: Academic Press

ISBN: 1483268098

Category: Mathematics

Page: 514

View: 2814

Author: Richard F. Bass

Publisher: Cambridge University Press

ISBN: 113950147X

Category: Mathematics

Page: N.A

View: 644

Author: James L. Melsa,Andrew P. Sage

Publisher: Courier Corporation

ISBN: 0486490998

Category: Mathematics

Page: 403

View: 5602

*A Friendly Introduction for Electrical and Computer Engineers*

Author: Roy D. Yates,David J. Goodman

Publisher: John Wiley & Sons

ISBN: 1118324560

Category: Mathematics

Page: 512

View: 4915

Author: Oliver Ibe

Publisher: Newnes

ISBN: 0124078397

Category: Mathematics

Page: 514

View: 6024

Author: Ming Liao

Publisher: CRC Press

ISBN: 1466589337

Category: Business & Economics

Page: 208

View: 8553

Author: Howard M. Taylor,Samuel Karlin

Publisher: Academic Press

ISBN: 1483220443

Category: Mathematics

Page: 578

View: 1017

Author: Frank Beichelt

Publisher: CRC Press

ISBN: 9781420010459

Category: Mathematics

Page: 440

View: 8283

Author: Liliana Blanco CastaÃ±eda,Viswanathan Arunachalam,Selvamuthu Dharmaraja

Publisher: John Wiley & Sons

ISBN: 1118344960

Category: Mathematics

Page: 614

View: 1029

Author: Gregory F. Lawler

Publisher: CRC Press

ISBN: 9781584886518

Category: Mathematics

Page: 248

View: 7635

Author: Sidney I. Resnick

Publisher: Springer Science & Business Media

ISBN: 1461203872

Category: Mathematics

Page: 626

View: 4380

Author: Linda J. S. Allen

Publisher: Chapman and Hall/CRC

ISBN: 9781439818824

Category: Mathematics

Page: 490

View: 941