*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 2931

Skip to content
# Nothing Found

### Basic Stochastic Processes

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

### Basic Stochastic Processes

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

### Basic Stochastic Processes

This book presents basic stochastic processes, stochastic calculus including Lévy processes on one hand, and Markov and Semi Markov models on the other. From the financial point of view, essential concepts such as the Black and Scholes model, VaR indicators, actuarial evaluation, market values, fair pricing play a central role and will be presented. The authors also present basic concepts so that this series is relatively self-contained for the main audience formed by actuaries and particularly with ERM (enterprise risk management) certificates, insurance risk managers, students in Master in mathematics or economics and people involved in Solvency II for insurance companies and in Basel II and III for banks.

### Basics of Applied Stochastic Processes

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

### Stochastic Processes

Most introductory textbooks on stochastic processes which cover standard topics such as Poisson process, Brownian motion, renewal theory and random walks deal inadequately with their applications. Written in a simple and accessible manner, this book addresses that inadequacy and provides guidelines and tools to study the applications. The coverage includes research developments in Markov property, martingales, regenerative phenomena and Tauberian theorems, and covers measure theory at an elementary level.

### Stochastic Processes

Reliability theory is of fundamental importance for engineers and managers involved in the manufacture of high-quality products and the design of reliable systems. In order to make sense of the theory, however, and to apply it to real systems, an understanding of the basic stochastic processes is indispensable. As well as providing readers with useful reliability studies and applications, Stochastic Processes also gives a basic treatment of such stochastic processes as: the Poisson process, the renewal process, the Markov chain, the Markov process, and the Markov renewal process. Many examples are cited from reliability models to show the reader how to apply stochastic processes. Furthermore, Stochastic Processes gives a simple introduction to other stochastic processes such as the cumulative process, the Wiener process, the Brownian motion and reliability applications. Stochastic Processes is suitable for use as a reliability textbook by advanced undergraduate and graduate students. It is also of interest to researchers, engineers and managers who study or practise reliability and maintenance.

### An Introduction to Probability and Stochastic Processes

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

### Stochastic Processes in Science, Engineering and Finance

This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.

### Adventures in Stochastic Processes

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.

### Stochastic Processes with Applications

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.

### Discrete Stochastic Processes

Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

### Stochastic Processes with Applications to Finance, Second Edition

Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools that are easy to understand even for those with little mathematical expertise. This second edition covers several important developments in the financial industry. New to the Second Edition A chapter on the change of measures and pricing of insurance products Many examples of the change of measure technique, including its use in asset pricing theory A section on the use of copulas, especially in the pricing of CDOs Two chapters that offer more coverage of interest rate derivatives and credit derivatives Exploring the merge of actuarial science and financial engineering, this edition examines how the pricing of insurance products, such as equity-linked annuities, requires knowledge of asset pricing theory since the equity index can be traded in the market. The book looks at the development of many probability transforms for pricing insurance risks, including the Esscher transform. It also describes how the copula model is used to model the joint distribution of underlying assets. By presenting significant results in discrete processes and showing how to transfer the results to their continuous counterparts, this text imparts an accessible, practical understanding of the subject. It helps readers not only grasp the theory of financial engineering, but also implement the theory in business.

### Stochastic Processes for Physicists

Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

### Stochastic-Process Limits

From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews

### Queues and Inventories

### Exponential Families of Stochastic Processes

A comprehensive account of the statistical theory of exponential families of stochastic processes. The book reviews the progress in the field made over the last ten years or so by the authors - two of the leading experts in the field - and several other researchers. The theory is applied to a broad spectrum of examples, covering a large number of frequently applied stochastic process models with discrete as well as continuous time. To make the reading even easier for statisticians with only a basic background in the theory of stochastic process, the first part of the book is based on classical theory of stochastic processes only, while stochastic calculus is used later. Most of the concepts and tools from stochastic calculus needed when working with inference for stochastic processes are introduced and explained without proof in an appendix. This appendix can also be used independently as an introduction to stochastic calculus for statisticians. Numerous exercises are also included.

### Stochastic Processes

This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

### Introduction to Probability and Stochastic Processes with Applications

An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.

Full PDF eBook Download Free

*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 2931

*A Course Through Exercises*

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 9783540761754

Category: Mathematics

Page: 225

View: 4248

Author: Pierre Devolder,Jacques Janssen,Raimondo Manca

Publisher: John Wiley & Sons

ISBN: 1848218826

Category: Mathematics

Page: 326

View: 7019

Author: Richard Serfozo

Publisher: Springer Science & Business Media

ISBN: 3540893326

Category: Mathematics

Page: 443

View: 5743

*Basic Theory and Its Applications*

Author: Narahari Umanath Prabhu

Publisher: World Scientific

ISBN: 9812706267

Category: Mathematics

Page: 341

View: 1009

*with Applications to Reliability Theory*

Author: Toshio Nakagawa

Publisher: Springer Science & Business Media

ISBN: 9780857292742

Category: Technology & Engineering

Page: 254

View: 4448

Author: James L. Melsa,Andrew P. Sage

Publisher: Courier Corporation

ISBN: 0486490998

Category: Mathematics

Page: 403

View: 372

Author: Frank Beichelt

Publisher: CRC Press

ISBN: 9781420010459

Category: Mathematics

Page: 440

View: 2981

Author: Sidney I. Resnick

Publisher: Springer Science & Business Media

ISBN: 1461203872

Category: Mathematics

Page: 626

View: 727

Author: Rabi N. Bhattacharya,Edward C. Waymire

Publisher: SIAM

ISBN: 0898716896

Category: Mathematics

Page: 184

View: 6792

Author: Robert G. Gallager

Publisher: Springer Science & Business Media

ISBN: 146152329X

Category: Technology & Engineering

Page: 271

View: 7134

Author: Masaaki Kijima

Publisher: CRC Press

ISBN: 1439884846

Category: Business & Economics

Page: 343

View: 7546

*Understanding Noisy Systems*

Author: Kurt Jacobs

Publisher: Cambridge University Press

ISBN: 1139486799

Category: Science

Page: 204

View: 6710

*An Introduction to Stochastic-Process Limits and Their Application to Queues*

Author: Ward Whitt

Publisher: Springer Science & Business Media

ISBN: 0387217487

Category: Mathematics

Page: 602

View: 9264

*A Study Fo Their Basic Stochastic Processes*

Author: Narahari Umanath Prabhu

Publisher: N.A

ISBN: N.A

Category: Queuing theory

Page: 275

View: 2294

Author: Uwe Küchler,Michael Sorensen

Publisher: Springer Science & Business Media

ISBN: 0387227652

Category: Mathematics

Page: 322

View: 6302

*Theory for Applications*

Author: Robert G. Gallager

Publisher: Cambridge University Press

ISBN: 1107435315

Category: Technology & Engineering

Page: 568

View: 2100

Author: Liliana Blanco CastaÃ±eda,Viswanathan Arunachalam,Selvamuthu Dharmaraja

Publisher: John Wiley & Sons

ISBN: 1118344960

Category: Mathematics

Page: 614

View: 386