Applied Partial Differential Equations

Author: J David Logan

Publisher: Springer Science & Business Media

ISBN: 1468405330

Category: Mathematics

Page: 181

View: 3018

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)

Author: Richard Haberman

Publisher: Pearson

ISBN: 9780134995434

Category: Boundary value problems

Page: 784

View: 3827

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.

Applied Partial Differential Equations

Author: Paul DuChateau,David Zachmann

Publisher: Courier Corporation

ISBN: 048614187X

Category: Mathematics

Page: 640

View: 3667

DIVBook focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included. /div

Applied Partial Differential Equations

Author: J. R. Ockendon,Sam Howison,Andrew Lacey,Alexander Movchan

Publisher: Oxford University Press on Demand

ISBN: 9780198527718

Category: Mathematics

Page: 449

View: 7411

Partial differential equations are used in mathematical models of a huge range of real-world phenomena, from electromagnetism to financial markets. This revised edition of Applied Partial Differential Equations contains many new sections and exercises including transform methods, free surface flows, linear elasticity and complex characteristics.

Applied Partial Differential Equations

With Fourier Series and Boundary Value Problems

Author: Richard Haberman

Publisher: Prentice Hall

ISBN: 9780130652430

Category: Mathematics

Page: 769

View: 2062

Emphasizing the physical interpretation of mathematical solutions, this book introduces applied mathematics while presenting partial differential equations. Topics addressed include heat equation, method of separation of variables, Fourier series, Sturm-Liouville eigenvalue problems, finite difference numerical methods for partial differential equations, nonhomogeneous problems, Green's functions for time-independent problems, infinite domain problems, Green's functions for wave and heat equations, the method of characteristics for linear and quasi-linear wave equations and a brief introduction to Laplace transform solution of partial differential equations. For scientists and engineers.

Applied Partial Differential Equations: An Introduction

Author: Alan Jeffrey

Publisher: Academic Press

ISBN: 9780123822529

Category: Mathematics

Page: 394

View: 9869

This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available

Applied Partial Differential Equations:

A Visual Approach

Author: Peter Markowich

Publisher: Springer Science & Business Media

ISBN: 3540346465

Category: Mathematics

Page: 206

View: 1928

This book presents topics of science and engineering which occur in nature or are part of daily life. It describes phenomena which are modelled by partial differential equations, relating to physical variables like mass, velocity and energy, etc. to their spatial and temporal variations. The author has chosen topics representing his career-long interests, including the flow of fluids and gases, granular flows, biological processes like pattern formation on animal skins, kinetics of rarified gases and semiconductor devices. Each topic is presented in its scientific or engineering context, followed by an introduction of applicable mathematical models in the form of partial differential equations.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 4246

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Elementary Applied Partial Differential Equations

With Fourier Series and Boundary Value Problems

Author: Richard Haberman

Publisher: N.A

ISBN: 9780132638074

Category: Mathematics

Page: 736

View: 1549

KEY BENEFIT Emphasizing physical interpretations of mathematical solutions, this book introduces applied mathematics and presents partial differential equations. KEY TOPICS Leading readers from simple exercises through increasingly powerful mathematical techniques, this book discusses hear flow and vibrating strings and membranes, for a better understand of the relationship between mathematics and physical problems. It also emphasizes problem solving and provides a thorough approach to solutions. The third edition of , Elementary Applied Partial Differential Equations; With Fourier Series and Boundary Value Problems has been revised to include a new chapter covering dispersive waves. It also includes new sections covering fluid flow past a circular cylinder; reflection and refraction of light and sound waves; the finite element method; partial differential equations with spherical geometry; eigenvalue problems with a continuous and discrete spectrum; and first-order nonlinear partial differential equations. An essential reference for any technical or mathematics professional.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 3041

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Outlines and Highlights for Applied Partial Differential Equations by Richard Haberman, Isbn

9780130652430

Author: Cram101 Textbook Reviews

Publisher: Academic Internet Pub Incorporated

ISBN: 9781428837492

Category: Education

Page: 186

View: 8978

Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9780130652430 .

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Books a la Carte

Author: Richard Haberman

Publisher: Addison-Wesley Longman

ISBN: 9780321797063

Category: Mathematics

Page: 756

View: 9338

This edition features the exact same content as the traditional text in a convenient, three-hole-punched, loose-leaf version. Books a la Carte also offer a great value--this format costs significantly less than a new textbook. This text emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for students in science, engineering, and applied mathematics.

Introduction to Applied Partial Differential Equations

Author: John M. Davis

Publisher: Macmillan Higher Education

ISBN: 1464119406

Category: Mathematics

Page: N.A

View: 1447

Drawing on his decade of experience teaching the differential equations course, John Davis offers a refreshing and effective new approach to partial differential equations that is equal parts computational proficiency, visualization, and physical interpretation of the problem at hand.

Nonlinear Systems of Partial Differential Equations in Applied Mathematics

Author: Basil Nicolaenko,Darryl D. Holm,James M. Hyman,American Mathematical Society

Publisher: American Mathematical Soc.

ISBN: 9780821896891

Category: Mathematics

Page: 855

View: 4314

These two volumes of 47 papers focus on the increased interplay of theoretical advances in nonlinear hyperbolic systems, completely integrable systems, and evolutionary systems of nonlinear partial differential equations. The papers both survey recent results and indicate future research trends in these vital and rapidly developing branches of PDEs. The editor has grouped the papers loosely into the following five sections: integrable systems, hyperbolic systems, variational problems, evolutionary systems, and dispersive systems. However, the variety of the subjects discussed as well as their many interwoven trends demonstrate that it is through interactive advances that such rapid progress has occurred. These papers require a good background in partial differential equations. Many of the contributors are mathematical physicists, and the papers are addressed to mathematical physicists (particularly in perturbed integrable systems), as well as to PDE specialists and applied mathematicians in general.

Partial Differential Equations of Applied Mathematics

Author: Erich Zauderer

Publisher: John Wiley & Sons

ISBN: 1118031407

Category: Mathematics

Page: 968

View: 8272

This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.