Applied Numerical Analysis Using MATLAB

Author: Laurene V. Fausett

Publisher: Prentice Hall

ISBN: 9780132397285

Category: Computers

Page: 673

View: 8979

Uses introductory problems from particular applications that are easy to understand and show the reader that there is a need for a particular mathematical technique. Numerical techniques are explained from basics with an emphasis on why they work.Discusses the contexts and reasons for selection of each problem and solution method. Worked-out examples are very realistic and not contrived.

Applied Numerical Methods with MATLAB for Engineers and Scientists

Author: Steven C. Chapra

Publisher: McGraw-Hill

ISBN: 9780071259217

Category: MATLAB

Page: 588

View: 7779

Steven Chapra’s second edition, Applied Numerical Methods with MATLAB for Engineers and Scientists, is written for engineers and scientists who want to learn numerical problem solving. This text focuses on problem-solving (applications) rather than theory, using MATLAB, and is intended for Numerical Methods users; hence theory is included only to inform key concepts. The second edition feature new material such as Numerical Differentiation and ODE's: Boundary-Value Problems. For those who require a more theoretical approach, see Chapra's best-selling Numerical Methods for Engineers, 5/e (2006), also by McGraw-Hill.

Applied Numerical Methods Using MATLAB

Author: Won Y. Yang,Wenwu Cao,Tae-Sang Chung,John Morris

Publisher: John Wiley & Sons

ISBN: 0471705187

Category: Mathematics

Page: 400

View: 678

In recent years, with the introduction of new media products, there has been a shift in the use of programming languages from FORTRAN or C to MATLAB for implementing numerical methods. This book makes use of the powerful MATLAB software to avoid complex derivations, and to teach the fundamental concepts using the software to solve practical problems. Over the years, many textbooks have been written on the subject of numerical methods. Based on their course experience, the authors use a more practical approach and link every method to real engineering and/or science problems. The main benefit is that engineers don't have to know the mathematical theory in order to apply the numerical methods for solving their real-life problems. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.

Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

Author: Ramin S. Esfandiari

Publisher: CRC Press

ISBN: 1498777449

Category: Mathematics

Page: 493

View: 6212

This book provides a pragmatic, methodical and easy-to-follow presentation of numerical methods and their effective implementation using MATLAB, which is introduced at the outset. The author introduces techniques for solving equations of a single variable and systems of equations, followed by curve fitting and interpolation of data. The book also provides detailed coverage of numerical differentiation and integration, as well as numerical solutions of initial-value and boundary-value problems. The author then presents the numerical solution of the matrix eigenvalue problem, which entails approximation of a few or all eigenvalues of a matrix. The last chapter is devoted to numerical solutions of partial differential equations that arise in engineering and science. Each method is accompanied by at least one fully worked-out example showing essential details involved in preliminary hand calculations, as well as computations in MATLAB. This thoroughly-researched resource:

Numerical Methods with MATLAB

Implementations and Applications

Author: Gerald W. Recktenwald

Publisher: Pearson College Division

ISBN: N.A

Category: Computers

Page: 786

View: 9483

This thorough, modern exposition of classic numerical methods using MATLAB briefly develops the fundamental theory of each method. Rather than providing a detailed numerical analysis, the behavior of the methods is exposed by carefully designed numerical experiments. The methods are then exercised on several nontrivial example problems from engineering practice. This structured, concise, and efficient book contains a large number of examples of two basic types—One type of example demonstrates a principle or numerical method in the simplest possible terms. Another type of example demonstrates how a particular method can be used to solve a more complex practical problem. The material in each chapter is organized as a progression from the simple to the complex. Contains an extensive reference to using MATLAB. This includes interactive (command line) use of MATLAB, MATLAB programming, plotting, file input and output. For a practical and rigorous introduction to the fundamentals of numerical computation.

Numerical Analysis and Graphic Visualization with MATLAB

Author: Shoichiro Nakamura

Publisher: Prentice Hall

ISBN: 9780130515186

Category: Mathematics

Page: 477

View: 2953

Featuring a disk containing MATLAB scripts of functions and examples, this book explores using MATLAB for numerical methods and graphic visualization. It offers a complete tutorial of MATLAB, covering numerical methods with MATLAB and advanced three-dimensional graphics with color.

Numerical Methods in Finance and Economics

A MATLAB-Based Introduction

Author: Paolo Brandimarte

Publisher: John Wiley & Sons

ISBN: 1118625579

Category: Mathematics

Page: 696

View: 6593

A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.

Computational Partial Differential Equations Using MATLAB

Author: Jichun Li,Yi-Tung Chen

Publisher: CRC Press

ISBN: 9781420089059

Category: Mathematics

Page: 378

View: 7701

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical methods, such as the high-order compact difference method and the radial basis function meshless method. Helps Students Better Understand Numerical Methods through Use of MATLAB® The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions. All the Material Needed for a Numerical Analysis Course Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

Numerical Computing with MATLAB

Revised Reprint

Author: Cleve B. Moler

Publisher: SIAM

ISBN: 0898716608

Category: Computers

Page: 336

View: 8027

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

Numerical Methods in Engineering with Python

Author: Jaan Kiusalaas

Publisher: Cambridge University Press

ISBN: 113948415X

Category: Technology & Engineering

Page: 422

View: 7503

This text is for engineering students and a reference for practising engineers, especially those who wish to explore Python. This new edition features 18 additional exercises and the addition of rational function interpolation. Brent's method of root finding was replaced by Ridder's method, and the Fletcher-Reeves method of optimization was dropped in favor of the downhill simplex method. Each numerical method is explained in detail, and its shortcomings are pointed out. The examples that follow individual topics fall into two categories: hand computations that illustrate the inner workings of the method and small programs that show how the computer code is utilized in solving a problem. This second edition also includes more robust computer code with each method, which is available on the book website. This code is made simple and easy to understand by avoiding complex bookkeeping schemes, while maintaining the essential features of the method.

Applied Numerical Methods for Engineers Using MATLAB and C

Author: Robert Joseph Schilling,Sandra L. Harris

Publisher: Brooks/Cole Publishing Company

ISBN: 9780534370145

Category: Computers

Page: 715

View: 1812

This book provides a comprehensive discussion of numerical computing techniques with an emphasis on practical applications in the fields of civil, chemical, electrical, and mechanical engineering. It features two software libraries that implement the algorithms developed in the text - a MATLAB® toolbox, and an ANSI C library. This book is intended for undergraduate students. Each chapter includes detailed case study examples from the four engineering fields with complete solutions provided in MATLAB® and C, detailed objectives, numerous worked-out examples and illustrations, and summaries comparing the numerical techniques. Chapter problems are divided into separate analysis and computation sections. Documentation for the software is provided in text appendixes that also include a helpful review of vectors and matrices. The Instructor's Manual includes a disk with software documentation and complete solutions to both problems and examples in the book.

Numerical Methods Using Matlab

Author: John H. Mathews,Kurtis K. Fink

Publisher: N.A

ISBN: 9781408264188

Category:

Page: N.A

View: 7472

This package consists of the textbook plus MATLAB & Simulink Student Version 2010a For undergraduate Introduction to Numerical Analysis courses in mathematics, science, and engineering departments. This book provides a fundamental introduction to numerical analysis for undergraduate students in the areas of mathematics, computer science, physical sciences, and engineering. Knowledge of calculus is assumed.

Environmental Data Analysis with MatLab

Author: William Menke,Joshua Menke

Publisher: Academic Press

ISBN: 0128045507

Category: Mathematics

Page: 342

View: 5953

Environmental Data Analysis with MatLab is a new edition that expands fundamentally on the original with an expanded tutorial approach, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. Since publication of the bestselling Environmental Data Analysis with MATLAB®, many advances have been made in environmental data analysis. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often noisy data drawn from a broad range of sources. The work teaches the basics of the underlying theory of data analysis and then reinforces that knowledge with carefully chosen, realistic scenarios. MATLAB®, a commercial data processing environment, is used in these scenarios. Significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. This new edition, though written in a self-contained way, is supplemented with data and MATLAB® scripts that can be used as a data analysis tutorial. New features include boxed crib sheets to help identify major results and important formulas and give brief advice on how and when they should be used. Numerical derivatives and integrals are derived and illustrated. Includes log-log plots with further examples of their use. Discusses new datasets on precipitation and stream flow. Topical enhancement applies the chi-squared test to the results of the generalized least squares method. New coverage of cluster analysis and approximation techniques that are widely applied in data analysis, including Taylor Series and low-order polynomial approximations; non-linear least-squares with Newton’s method; and pre-calculation and updating techniques applicable to real time data acquisition. Provides a clear learning path for researchers and students using data analysis techniques which build upon one another, choosing the right order of presentation to substantially aid the reader in learning material Includes crib sheets to summarize the most important data analysis techniques, results, procedures, and formulas, serving to organize the material in such a way that its sequence is more apparent Uses real-world environmental examples and case studies formulated using the readily-available software environment in MATLAB® Includes log-log plots with further examples of their use

Numerical methods for engineers and scientists

an introduction with applications using Matlab

Author: Amos Gilat,Vish Subramaniam

Publisher: John Wiley & Sons Inc

ISBN: 9780471734406

Category: Computers

Page: 459

View: 4457

A clear and concise guide to numerical methods and their application Mastering numerical methods has never been easier than with Gilat/Subramaniam\'s Numerical Methods For Engineers and Scientists: An Introduction with Applications Using MATLAB(r). Uniquely accessible and concise, this book takes an innovative approach that integrates the study of numerical methods with hands-on programming practice using the popular MATLAB environment to solve realistic problems in engineering and science. Ideal for both students and professionals who would like to become more adept at numerical methods, Numerical Methods For Engineers and Scientists familiarizes you with: * The mathematical background and fundamentals of numerical methods * Solving nonlinear equations * Solving a system of linear equations * Eigenvalues and Eigenvectors * Function approximation, curve fitting, and interpolation * Differentiation * Integration * First-order and higher-order ODEs * Initial and boundary value problems Using MATLAB\'s built-in functions as tools for solving problems, you will practice applying numerical methods for analysis of real-world problems. All the information is presented in manageable, step-by-step fashion, supported by a large number of annotated examples and end-of-chapter problems. Lucid, carefully structured, and flexibly designed to fulfill a wide range of academic and practical needs, this book will help you develop the skills in numerical methods that will serve you well as a practicing engineer. About the Authors: Amos Gilat, Ph.D., is Professor of Mechanical Engineering at The Ohio State University. Dr. Gilat\'s main research interests are in plasticity, specifically, in developing experimental techniques for testing materials over a wide range of strain rates and temperatures and in investigating constitutive relations for viscoplasticity. Dr. Gilat\'s research has been supported by the National Science Foundation, NASA, Department of Energy, Department of Defense, and various industries. Vish Subramaniam, Ph.D., is Professor of Mechanical Engineering & Chemical Physics at The Ohio State University. Dr. Subramaniam\'s main research interests are in plasma and laser physics and processes, particularly those that involve non-equilibrium phenomena. Dr. Subramaniam\'s research is both experimental and computational, and has been supported by the Department of Defense, National Science Foundation, and numerous industries.

MATLAB Guide, Third Edition

Author: Desmond J. Higham,Nicholas J. Higham

Publisher: SIAM

ISBN: 1611974666

Category: Science

Page: 476

View: 2834

MATLAB is an interactive system for numerical computation that is widely used for teaching and research in industry and academia. It provides a modern programming language and problem solving environment, with powerful data structures, customizable graphics, and easy-to-use editing and debugging tools. This third edition of MATLAB Guide completely revises and updates the best-selling second edition and is more than 30 percent longer. The book remains a lively, concise introduction to the most popular and important features of MATLAB and the Symbolic Math Toolbox. Key features are a tutorial in Chapter 1 that gives a hands-on overview of MATLAB; a thorough treatment of MATLAB mathematics, including the linear algebra and numerical analysis functions and the differential equation solvers; and a web page at http://www.siam.org/books/ot150 that provides example program files, updates, and links to MATLAB resources. The new edition contains color figures throughout; includes pithy discussions of related topics in new ?Asides" boxes that augment the text; has new chapters on the Parallel Computing Toolbox, object-oriented programming, graphs, and large data sets; covers important new MATLAB data types such as categorical arrays, string arrays, tall arrays, tables, and timetables; contains more on MATLAB workflow, including the Live Editor and unit tests; and fully reflects major updates to the MATLAB graphics system. This book is suitable for both beginners and more experienced users, including students, researchers, and practitioners.

Numerical Methods

Using MATLAB

Author: George R. Lindfield,John E. T. Penny

Publisher: Academic Press

ISBN: 0123869420

Category: Computers

Page: 534

View: 2719

Penny's name appears first on the earlier edition.

Numerical Methods for Chemical Engineers with MATLAB Applications

Author: A. Constantinides

Publisher: Prentice Hall

ISBN: 9780130138514

Category: Technology & Engineering

Page: 560

View: 9092

Master numerical methods using MATLAB, today's leading software for problem solving. This complete guide to numerical methods in chemical engineering is the first to take full advantage of MATLAB's powerful calculation environment. Every chapter contains several examples using general MATLAB functions that implement the method and can also be applied to many other problems in the same category. The authors begin by introducing the solution of nonlinear equations using several standard approaches, including methods of successive substitution and linear interpolation; the Wegstein method, the Newton-Raphson method; the Eigenvalue method; and synthetic division algorithms. With these fundamentals in hand, they move on to simultaneous linear algebraic equations, covering matrix and vector operations; Cramer's rule; Gauss methods; the Jacobi method; and the characteristic-value problem. Additional coverage includes: Finite difference methods, and interpolation of equally and unequally spaced points Numerical differentiation and integration, including differentiation by backward, forward, and central finite differences; Newton-Cotes formulas; and the Gauss Quadrature Two detailed chapters on ordinary and partial differential equations Linear and nonlinear regression analyses, including least squares, estimated vector of parameters, method of steepest descent, Gauss-Newton method, Marquardt Method, Newton Method, and multiple nonlinear regression The numerical methods covered here represent virtually all of those commonly used by practicing chemical engineers. The focus on MATLAB enables readers to accomplish more, with less complexity, than was possible with traditional FORTRAN. For those unfamiliar with MATLAB, a brief introduction is provided as an Appendix. Over 60+ MATLAB examples, methods, and function scripts are covered, and all of them are included on the book's CD

Partial Differential Equations

Analytical and Numerical Methods, Second Edition

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719488

Category: Mathematics

Page: 654

View: 7197

Partial differential equations (PDEs) are essential for modeling many physical phenomena. This undergraduate textbook introduces students to the topic with a unique approach that emphasizes the modern finite element method alongside the classical method of Fourier analysis.

Numerical Methods with MATLAB

Author: Amos Gilat,Vish Subramaniam

Publisher: Wiley

ISBN: 9780470565155

Category: Technology & Engineering

Page: 512

View: 3923

A comprehensive guide to the latest version MATLAB Providing you with concise coverage on the essential topics of numerical methods, this new edition presents the latest version of the MATLAB software and focuses on the use of anonymous functions instead of inline functions, along with the uses of subfunctions and nested functions. The author has added a new chapter on the subject of Eignvalues and Eigenvectors as well as on FFT. Plus, the number of end of chapter problems has been increased and revised, encouraging you to test your understanding of the material while also reinforcing key concepts. Includes a comprehensive update of the MATLAB coverage to present the latest version of the software Focuses on the use of anonymous functions instead of inline functions along with the uses of subfunctions and nested functions Features a new chapter on Eignvalues, Eigenvectors, and FFT Increases and revises the end of chapter problems to make the material more relevant Offers more applications from all branches of engineering With this book, you'll have a reliable source on all the essential topics of numerical methods.