Author: Vladimir Dobrushkin

Publisher: CRC Press

ISBN: 1498733727

Category: Mathematics

Page: 684

View: 3819

Skip to content
# Nothing Found

### Applied Differential Equations with Boundary Value Problems

Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author’s popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.

### Partial Differential Equations and Boundary-value Problems with Applications

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

### Boundary Value Problems of Applied Mathematics

This text is geared toward advanced undergraduates and graduate students in mathematics who have some familiarity with multidimensional calculus and ordinary differential equations. Includes a substantial number of answers to selected problems. 1994 edition.

### Applied Partial Differential Equations

Normal 0 false false false This book emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.

### Elementary Applied Partial Differential Equations

KEY BENEFIT Emphasizing physical interpretations of mathematical solutions, this book introduces applied mathematics and presents partial differential equations. KEY TOPICS Leading readers from simple exercises through increasingly powerful mathematical techniques, this book discusses hear flow and vibrating strings and membranes, for a better understand of the relationship between mathematics and physical problems. It also emphasizes problem solving and provides a thorough approach to solutions. The third edition of , Elementary Applied Partial Differential Equations; With Fourier Series and Boundary Value Problems has been revised to include a new chapter covering dispersive waves. It also includes new sections covering fluid flow past a circular cylinder; reflection and refraction of light and sound waves; the finite element method; partial differential equations with spherical geometry; eigenvalue problems with a continuous and discrete spectrum; and first-order nonlinear partial differential equations. An essential reference for any technical or mathematics professional.

### Boundary Value Problems

Boundary Value Problems, Sixth Edition, is the leading text on boundary value problems and Fourier series for professionals and students in engineering, science, and mathematics who work with partial differential equations. In this updated edition, author David Powers provides a thorough overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Additional techniques used include Laplace transform and numerical methods. The book contains nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises. Professors and students agree that Powers is a master at creating examples and exercises that skillfully illustrate the techniques used to solve science and engineering problems. Ancillary list: Online SSM- http://www.elsevierdirect.com/product.jsp?isbn=9780123747198 Online ISM- http://textbooks.elsevier.com/web/manuals.aspx?isbn=9780123747198 Companion site, Ebook- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747198 Student Solution Manual for Sixth Edition - https://www.elsevier.com/books/student-solutions-manual-boundary-value-problems/powers/978-0-12-375664-0 New animations and graphics of solutions, additional exercises and chapter review questions on the web Nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises Many exercises based on current engineering applications

### Elementary Differential Equations with Boundary Value Problems

Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.

### Elementary Differential Equations and Boundary Value Problems

With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including: • Embedded & searchable equations, figures & tables • Math XML • Index with linked pages numbers for easy reference • Redrawn full color figures to allow for easier identification Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1⁄2 or threeï¿1⁄2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

### Differential Equations with Boundary-Value Problems

DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 9th Edition, strikes a balance between the analytical, qualitative, and quantitative approaches to the study of Differential Equations. This proven text speaks to students of varied majors through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, and definitions. Written in a straightforward, readable, and helpful style, the book provides a thorough overview of the topics typically taught in a first course in Differential Equations as well as an introduction to boundary-value problems and partial Differential Equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

### Partial Differential Equations with Fourier Series and Boundary Value Problems

This text provides an introduction to partial differential equations and boundary value problems, including Fourier series. The treatment offers students a smooth transition from a course in elementary ordinary differential equations to more advanced topics in a first course in partial differential equations. This widely adopted and successful book also serves as a valuable reference for engineers and other professionals. The approach emphasizes applications, with particular stress on physics and engineering applications. Rich in proofs and examples, the treatment features many exercises in each section. Relevant Mathematica files are available for download from author Nakhlé Asmar's website; however, the book is completely usable without computer access. The Students' Solutions Manual can be downloaded for free from the Dover website, and the Instructor's Solutions Manual is available upon request for professors and potential teachers. The text is suitable for undergraduates in mathematics, physics, engineering, and other fields who have completed a course in ordinary differential equations.

### Partial Differential Equations and Boundary Value Problems

The material of the present book has been used for graduate-level courses at the University of Ia~i during the past ten years. It is a revised version of a book which appeared in Romanian in 1993 with the Publishing House of the Romanian Academy. The book focuses on classical boundary value problems for the principal equations of mathematical physics: second order elliptic equations (the Poisson equations), heat equations and wave equations. The existence theory of second order elliptic boundary value problems was a great challenge for nineteenth century mathematics and its development was marked by two decisive steps. Undoubtedly, the first one was the Fredholm proof in 1900 of the existence of solutions to Dirichlet and Neumann problems, which represented a triumph of the classical theory of partial differential equations. The second step is due to S. 1. Sobolev (1937) who introduced the concept of weak solution in partial differential equations and inaugurated the modern theory of boundary value problems. The classical theory which is a product ofthe nineteenth century, is concerned with smooth (continuously differentiable) sollutions and its methods rely on classical analysis and in particular on potential theory. The modern theory concerns distributional (weak) solutions and relies on analysis of Sob ole v spaces and functional methods. The same distinction is valid for the boundary value problems associated with heat and wave equations. Both aspects of the theory are present in this book though it is not exhaustive in any sense.

### Ordinary and Partial Differential Equations

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

### Differential Equations with Boundary-Value Problems

DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 8th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

### Applied Partial Differential Equations

DIVBook focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included. /div

### Introductory Differential Equations

This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, and Fourier Series. Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries. Because many students need a lot of pencil-and-paper practice to master the essential concepts, the exercise sets are particularly comprehensive with a wide range of exercises ranging from straightforward to challenging. Many different majors will require differential equations and applied mathematics, so there should be a lot of interest in an intro-level text like this. The accessible writing style will be good for non-math students, as well as for undergrad classes.

### A Course in Differential Equations with Boundary Value Problems, Second Edition

A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author’s successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student’s field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB®,?Mathematica®, and MapleTM. The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. ? Features MATLAB®,?Mathematica®, and MapleTM are incorporated at the end of each chapter. All three software packages have parallel code and exercises; There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages. Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book

### Applied Partial Differential Equations

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

### Partial Differential Equations and Boundary Value Problems with Maple

Partial Differential Equations and Boundary Value Problems with Maple, Second Edition, presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours - an investment that provides substantial returns. Maple's animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations. This updated edition provides a quick overview of the software w/simple commands needed to get started. It includes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equations. It also incorporates an early introduction to Sturm-Liouville boundary problems and generalized eigenfunction expansions. Numerous example problems and end of each chapter exercises are provided. Provides a quick overview of the software w/simple commands needed to get started Includes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equations Incorporates an early introduction to Sturm-Liouville boundary problems and generalized eigenfunction expansions Numerous example problems and end of each chapter exercises

### A Course in Differential Equations with Boundary Value Problems, Second Edition

Previous title: A course in ordinary differential equations / Stephen A. Wirkus, Randall J. Swift (Boca Raton: CRC Press, 2015).

### Applied Differential Equations

A Contemporary Approach to Teaching Differential Equations Applied Differential Equations: An Introduction presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. Designed for a two-semester undergraduate course, the text offers a true alternative to books published for past generations of students. It enables students majoring in a range of fields to obtain a solid foundation in differential equations. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.

Full PDF eBook Download Free

Author: Vladimir Dobrushkin

Publisher: CRC Press

ISBN: 1498733727

Category: Mathematics

Page: 684

View: 3819

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

ISBN: 0821868896

Category: Mathematics

Page: 526

View: 7216

*Second Edition*

Author: John L. Troutman,Maurino P. Bautista

Publisher: Courier Dover Publications

ISBN: 0486812227

Category: Mathematics

Page: 528

View: 3492

*With Fourier Series and Boundary Value Problems*

Author: Richard Haberman

Publisher: Pearson College Division

ISBN: 9780321797056

Category: Mathematics

Page: 756

View: 3754

*With Fourier Series and Boundary Value Problems*

Author: Richard Haberman

Publisher: N.A

ISBN: 9780132638074

Category: Mathematics

Page: 736

View: 8488

*and Partial Differential Equations*

Author: David L. Powers

Publisher: Academic Press

ISBN: 0080884415

Category: Mathematics

Page: 520

View: 1690

Author: William F. Trench

Publisher: Brooks/Cole Publishing Company

ISBN: 9780534263287

Category: Mathematics

Page: 736

View: 7734

Author: William E. Boyce,Richard C. DiPrima,Douglas B. Meade

Publisher: Wiley Global Education

ISBN: 1119381673

Category: Mathematics

Page: N.A

View: 614

Author: Dennis G. Zill

Publisher: Cengage Learning

ISBN: 1305965795

Category: Mathematics

Page: 50

View: 4038

*Third Edition*

Author: Nakhle H. Asmar

Publisher: Courier Dover Publications

ISBN: 0486820831

Category: Mathematics

Page: 816

View: 2312

Author: Viorel Barbu

Publisher: Springer Science & Business Media

ISBN: 9401591172

Category: Mathematics

Page: 284

View: 3774

*With Special Functions, Fourier Series, and Boundary Value Problems*

Author: Ravi P. Agarwal,Donal O'Regan

Publisher: Springer Science & Business Media

ISBN: 0387791469

Category: Mathematics

Page: 410

View: 1043

Author: Dennis Zill,Warren Wright

Publisher: Cengage Learning

ISBN: 1111827060

Category: Mathematics

Page: 664

View: 7418

Author: Paul DuChateau,David Zachmann

Publisher: Courier Corporation

ISBN: 048614187X

Category: Mathematics

Page: 640

View: 575

*with Boundary Value Problems, Student Solutions Manual (e-only)*

Author: Martha L. Abell,James P. Braselton

Publisher: Academic Press

ISBN: 9780123846655

Category: Mathematics

Page: 212

View: 4894

Author: Stephen A. Wirkus,Randall J. Swift,Ryan Szypowski

Publisher: CRC Press

ISBN: 1498736068

Category: Mathematics

Page: 788

View: 729

Author: J David Logan

Publisher: Springer

ISBN: 3319124935

Category: Mathematics

Page: 289

View: 5433

Author: George A. Articolo

Publisher: Academic Press

ISBN: 0080885063

Category: Mathematics

Page: 744

View: 4170

Author: Stephen A. Wirkus,Randall J. Swift,Ryan Szypowski

Publisher: CRC Press

ISBN: 9781498736053

Category:

Page: 848

View: 7093

*The Primary Course*

Author: Vladimir A. Dobrushkin

Publisher: CRC Press

ISBN: 1498728359

Category: Mathematics

Page: 731

View: 8264