Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 9937

Skip to content
# Nothing Found

### An Introduction to Knot Theory

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

### An Introduction to Knot Theory

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

### An Introduction to Knot Theory

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

### Introduction to Knot Theory

Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.

### Formal Knot Theory

This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.

### The Knot Book

Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.

### Quandles

From prehistory to the present, knots have been used for purposes both artistic and practical. The modern science of Knot Theory has ramifications for biochemistry and mathematical physics and is a rich source of research projects for undergraduate and graduate students and professionals alike. Quandles are essentially knots translated into algebra. This book provides an accessible introduction to quandle theory for readers with a background in linear algebra. Important concepts from topology and abstract algebra motivated by quandle theory are introduced along the way. With elementary self-contained treatments of topics such as group theory, cohomology, knotted surfaces and more, this book is perfect for a transition course, an upper-division mathematics elective, preparation for research in knot theory, and any reader interested in knots.

### Knots and Primes

This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry.

### Classical Topology and Combinatorial Group Theory

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical develop ment where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recrea. ions like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics complex analysis (Riemann), mechanics (poincare), and group theory (Oehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.

### Knot Theory

This book uses only linear algebra and basic group theory to study the properties of knots.

### An Introduction to Measure Theory

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

### Knots and Links

Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book"".

### Grid Homology for Knots and Links

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.

### Knots, Links, Braids, and 3-manifolds

This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. It emphasizes the geometric aspects of the theory and treats topics such as braids, homeomorphisms of surfaces, surgery of 3-manifolds (Kirby calculus), and branched coverings. This attractive geometric material, interesting in itself yet not previously gathered in book form, constitutes the basis of the last two chapters, where the Jones-Witten invariants are constructed via the rigorous skein algebra approach (mainly due to the Saint Petersburg school). Unlike several recent monographs, where all of these invariants are introduced by using the sophisticated abstract algebra of quantum groups and representation theory, the mathematical prerequisites are minimal in this book. Numerous figures and problems make it suitable as a course text and for self-study.

### An Interactive Introduction to Knot Theory

This well-written and engaging volume, intended for undergraduates, introduces knot theory, an area of growing interest in contemporary mathematics. The hands-on approach features many exercises to be completed by readers. Prerequisites are only a basic familiarity with linear algebra and a willingness to explore the subject in a hands-on manner. The opening chapter offers activities that explore the world of knots and links — including games with knots — and invites the reader to generate their own questions in knot theory. Subsequent chapters guide the reader to discover the formal definition of a knot, families of knots and links, and various knot notations. Additional topics include combinatorial knot invariants, knot polynomials, unknotting operations, and virtual knots.

### An Invitation to Knot Theory

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.

### Knot Theory

Since discovery of the Jones polynomial, knot theory has enjoyed a virtual explosion of important results and now plays a significant role in modern mathematics. In a unique presentation with contents not found in any other monograph, Knot Theory describes, with full proofs, the main concepts and the latest investigations in the field. The book is divided into six thematic sections. The first part discusses "pre-Vassiliev" knot theory, from knot arithmetics through the Jones polynomial and the famous Kauffman-Murasugi theorem. The second part explores braid theory, including braids in different spaces and simple word recognition algorithms. A section devoted to the Vassiliev knot invariants follows, wherein the author proves that Vassiliev invariants are stronger than all polynomial invariants and introduces Bar-Natan's theory on Lie algebra respresentations and knots. The fourth part describes a new way, proposed by the author, to encode knots by d-diagrams. This method allows the encoding of topological objects by words in a finite alphabet. Part Five delves into virtual knot theory and virtualizations of knot and link invariants. This section includes the author's own important results regarding new invariants of virtual knots. The book concludes with an introduction to knots in 3-manifolds and Legendrian knots and links, including Chekanov's differential graded algebra (DGA) construction. Knot Theory is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a professional reference and will serve equally well as a text for a course on knot theory.

### Introduction to the Modern Theory of Dynamical Systems

This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.

### Homology Theory

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.

### 3-manifolds

A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold ... self-contained ... one can learn the subject from it ... would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. --Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The theme of this book is the role of the fundamental group in determining the topology of a given 3-manifold. The essential ideas and techniques are covered in the first part of the book: Heegaard splittings, connected sums, the loop and sphere theorems, incompressible surfaces, free groups, and so on. Along the way, many useful and insightful results are proved, usually in full detail. Later chapters address more advanced topics, including Waldhausen's theorem on a class of 3-manifolds that is completely determined by its fundamental group. The book concludes with a list of problems that were unsolved at the time of publication. Hempel's book remains an ideal text to learn about the world of 3-manifolds. The prerequisites are few and are typical of a beginning graduate student. Exercises occur throughout the text.

Full PDF eBook Download Free

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 9937

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 9780387982540

Category: Mathematics

Page: 201

View: 2478

Author: W.B.Raymond Lickorish

Publisher: Springer

ISBN: 9781461268697

Category: Mathematics

Page: 204

View: 5170

Author: R. H. Crowell,R. H. Fox

Publisher: Springer Science & Business Media

ISBN: 1461299357

Category: Mathematics

Page: 182

View: 3310

Author: Louis H. Kauffman

Publisher: Courier Corporation

ISBN: 048645052X

Category: Mathematics

Page: 254

View: 7898

*An Elementary Introduction to the Mathematical Theory of Knots*

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

ISBN: 0821836781

Category: Mathematics

Page: 306

View: 8373

Author: Mohamed Elhamdadi, Sam Nelson

Publisher: American Mathematical Soc.

ISBN: 1470422131

Category: Knot theory

Page: 245

View: 2510

*An Introduction to Arithmetic Topology*

Author: Masanori Morishita

Publisher: Springer Science & Business Media

ISBN: 9781447121589

Category: Mathematics

Page: 191

View: 5265

Author: N.A

Publisher: Springer Science & Business Media

ISBN: 1468401106

Category: Mathematics

Page: 301

View: 9397

Author: Charles Livingston

Publisher: Cambridge University Press

ISBN: 9780883850275

Category: Mathematics

Page: 240

View: 6714

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 5622

Author: Dale Rolfsen

Publisher: American Mathematical Soc.

ISBN: 0821834363

Category: Mathematics

Page: 439

View: 5015

Author: Peter S. Ozsváth,András I. Stipsicz,Zoltán Szabó

Publisher: American Mathematical Soc.

ISBN: 1470417375

Category: Homology theory

Page: 410

View: 9782

*An Introduction to the New Invariants in Low-dimensional Topology*

Author: V. V. Prasolov,A. B. Sossinsky

Publisher: American Mathematical Soc.

ISBN: 0821808982

Category: Science

Page: 239

View: 3822

Author: Inga Johnson,Allison K. Henrich

Publisher: Courier Dover Publications

ISBN: 0486818748

Category: Mathematics

Page: 192

View: 7594

*Virtual and Classical*

Author: Heather A. Dye

Publisher: CRC Press

ISBN: 1498798616

Category: Mathematics

Page: 256

View: 2920

Author: Vassily Olegovich Manturov,Vassily Manturov

Publisher: CRC Press

ISBN: 9780203402849

Category: Mathematics

Page: 416

View: 6607

Author: Anatole Katok,Boris Hasselblatt

Publisher: Cambridge University Press

ISBN: 9780521575577

Category: Mathematics

Page: 802

View: 5598

*An Introduction to Algebraic Topology*

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 1461208815

Category: Mathematics

Page: 245

View: 9137

Author: John Hempel

Publisher: American Mathematical Soc.

ISBN: 0821836951

Category: Mathematics

Page: 195

View: 4608