Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 9598

Skip to content
# Nothing Found

### An Introduction to Knot Theory

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

### Introduction to Knot Theory

Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.

### Introduction to Vassiliev Knot Invariants

With hundreds of worked examples, exercises and illustrations, this detailed exposition of the theory of Vassiliev knot invariants opens the field to students with little or no knowledge in this area. It also serves as a guide to more advanced material. The book begins with a basic and informal introduction to knot theory, giving many examples of knot invariants before the class of Vassiliev invariants is introduced. This is followed by a detailed study of the algebras of Jacobi diagrams and 3-graphs, and the construction of functions on these algebras via Lie algebras. The authors then describe two constructions of a universal invariant with values in the algebra of Jacobi diagrams: via iterated integrals and via the Drinfeld associator, and extend the theory to framed knots. Various other topics are then discussed, such as Gauss diagram formulae, before the book ends with Vassiliev's original construction.

### Knot Theory

This book uses only linear algebra and basic group theory to study the properties of knots.

### Knotentheorie für Einsteiger

Ein Jahrhundert Knotentheorie - Was ist ein Knoten - Kombinatorische Techniken - Geometrische Techniken - Algebraische Techniken - Geometrie, Algebra und das Alexander Polynom - Numerische Invarianten - Symmetrien von Knoten - Höherdimensionale Knotentheorie - Neue kombinatorische Techniken - Anhang 1: Knotentabelle - Anhang 2: Alexander Polynome Knotentheorie (als Teilgebiet der Topologie) ist zur Zeit sehr populär, vor allem wegen der vielen Anwendungen, nicht nur in der Mathematik, sondern auch in der Physik. Das Buch eignet sich als Grundlage für ein Seminar im Grundstudium Mathematik. Es richtet sich aber auch an Mathematiker und Naturwissenschaftler allgemein, die etwas über Knotentheorie lernen möchten, ohne auf Fachartikel und spezielle Monographien zurückgreifen zu müssen.

### Introduction to Knot Theory

Hailed by the Bulletin of the American Mathematical Society as "a very welcome addition to the mathematical literature," this text is appropriate for advanced undergraduates and graduate students. Written by two internationally renowned mathematicians, its accessible treatment requires no previous knowledge of algebraic topology. Starting with basic definitions of knots and knot types, the text proceeds to examinations of fundamental and free groups. A survey of the historic foundation for the notion of group presentation is followed by a careful proof of the theorem of Tietze and several examples of its use. Subsequent chapters explore the calculation of fundamental groups, the presentation of a knot group, the free calculus and the elementary ideals, and the knot polynomials and their characteristic properties. The text concludes with three helpful appendixes and a guide to the literature.

### A Survey of Knot Theory

Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.

### Knot Theory and Its Applications

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

### A Basic Course in Algebraic Topology

This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

### Algebraic Topology

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

### Maß und Kategorie

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

### International mathematical news

Issues for Dec. 1952- include section: Nachrichten der Österreichischen Mathematischen Gesellschaft.

### Einführung in die Theorie der eindimensionalen singulären Integraloperatoren

### Homology Theory

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.

### The Reidemeister Torsion of 3-Manifolds

This is a state-of-the-art introduction to the work of Franz Reidemeister, Meng Taubes, Turaev, and the author on the concept of torsion and its generalizations. Torsion is the oldest topological (but not with respect to homotopy) invariant that in its almost eight decades of existence has been at the center of many important and surprising discoveries. During the past decade, in the work of Vladimir Turaev, new points of view have emerged, which turned out to be the "right ones" as far as gauge theory is concerned. The book features mostly the new aspects of this venerable concept. The theoretical foundations of this subject are presented in a style accessible to those, who wish to learn and understand the main ideas of the theory. Particular emphasis is upon the many and rather diverse concrete examples and techniques which capture the subleties of the theory better than any abstract general result. Many of these examples and techniques never appeared in print before, and their choice is often justified by ongoing current research on the topology of surface singularities. The text is addressed to mathematicians with geometric interests who want to become comfortable users of this versatile invariant.

### Field Theory

"Springer has just released the second edition of Steven Roman’s Field Theory, and it continues to be one of the best graduate-level introductions to the subject out there....Every section of the book has a number of good exercises that would make this book excellent to use either as a textbook or to learn the material on your own. All in all...a well-written expository account of a very exciting area in mathematics." --THE MAA MATHEMATICAL SCIENCES DIGITAL LIBRARY

### Notices of the American Mathematical Society

### Classical Topology and Combinatorial Group Theory

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does not understand the simplest topological facts, such as the reason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical develop ment where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recrea. ions like the seven bridges; rather, it resulted from the visualization of problems from other parts of mathematics complex analysis (Riemann), mechanics (poincare), and group theory (Oehn). It is these connections to other parts of mathematics which make topology an important as well as a beautiful subject.

### Integration and Probability

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.

### Bonner mathematische Schriften

Full PDF eBook Download Free

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 9598

Author: R. H. Crowell,R. H. Fox

Publisher: Springer Science & Business Media

ISBN: 1461299357

Category: Mathematics

Page: 182

View: 659

Author: S. Chmutov,S. Duzhin,J. Mostovoy

Publisher: Cambridge University Press

ISBN: 1107020832

Category: Mathematics

Page: 504

View: 5510

Author: Charles Livingston

Publisher: Cambridge University Press

ISBN: 9780883850275

Category: Mathematics

Page: 240

View: 3527

Author: Charles Livingston

Publisher: Springer-Verlag

ISBN: 3322802876

Category: Mathematics

Page: 214

View: 2246

Author: Richard H. Crowell,Ralph Hartzler Fox

Publisher: N.A

ISBN: 9780486468945

Category: Mathematics

Page: 182

View: 4674

Author: Akio Kawauchi

Publisher: Birkhäuser

ISBN: 3034892276

Category: Mathematics

Page: 423

View: 8885

Author: Kunio Murasugi

Publisher: Springer Science & Business Media

ISBN: 0817647198

Category: Mathematics

Page: 341

View: 1941

Author: William S. Massey

Publisher: Springer Science & Business Media

ISBN: 9780387974309

Category: Mathematics

Page: 428

View: 9407

*A First Course*

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 9041

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 427

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9943

Author: I. Gohberg,Krupnik

Publisher: Springer-Verlag

ISBN: 3034855559

Category: Juvenile Nonfiction

Page: 379

View: 3371

*An Introduction to Algebraic Topology*

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 9780387941264

Category: Mathematics

Page: 245

View: 4717

Author: Liviu I. Nicolaescu

Publisher: Walter de Gruyter

ISBN: 311019810X

Category: Mathematics

Page: 263

View: 2651

Author: Steven Roman

Publisher: Springer Science & Business Media

ISBN: 0387276785

Category: Mathematics

Page: 335

View: 2196

Author: American Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4027

Author: N.A

Publisher: Springer Science & Business Media

ISBN: 1468401106

Category: Mathematics

Page: 301

View: 3108

Author: Paul Malliavin

Publisher: Springer Science & Business Media

ISBN: 1461242029

Category: Mathematics

Page: 326

View: 8174

Author: N.A

Publisher: N.A

ISBN: N.A

Category:

Page: N.A

View: 8906