An Introduction to Computational Fluid Dynamics

The Finite Volume Method

Author: Henk Kaarle Versteeg,Weeratunge Malalasekera

Publisher: Pearson Education

ISBN: 9780131274983

Category: Science

Page: 503

View: 3270

This book presents the fundamentals of computational fluid dynamics for the novice. It provides a thorough yet user-friendly introduction to the governing equations and boundary conditions of viscous fluid flows and its modelling.

Grenzschicht-Theorie

Author: H. Schlichting,Klaus Gersten

Publisher: Springer-Verlag

ISBN: 3662075547

Category: Technology & Engineering

Page: 852

View: 7983

Die Überarbeitung für die 10. deutschsprachige Auflage von Hermann Schlichtings Standardwerk wurde wiederum von Klaus Gersten geleitet, der schon die umfassende Neuformulierung der 9. Auflage vorgenommen hatte. Es wurden durchgängig Aktualisierungen vorgenommen, aber auch das Kapitel 15 von Herbert Oertel jr. neu bearbeitet. Das Buch gibt einen umfassenden Überblick über den Einsatz der Grenzschicht-Theorie in allen Bereichen der Strömungsmechanik. Dabei liegt der Schwerpunkt bei den Umströmungen von Körpern (z.B. Flugzeugaerodynamik). Das Buch wird wieder den Studenten der Strömungsmechanik wie auch Industrie-Ingenieuren ein unverzichtbarer Partner unerschöpflicher Informationen sein.

Computational Fluid Dynamics

An Introduction

Author: John F. Wendt

Publisher: Springer Science & Business Media

ISBN: 3540850562

Category: Technology & Engineering

Page: 332

View: 4948

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.

Numerische Strömungsmechanik

Author: Joel H. Ferziger,Milovan Peric

Publisher: Springer-Verlag

ISBN: 3540682287

Category: Science

Page: 509

View: 1433

Das Buch bietet einen Überblick über die numerischen Methoden zur Lösung strömungsmechanischer Probleme. Die in der Praxis meistgenutzten Methoden werden detailliert beschrieben. Behandelt werden auch fortgeschrittene Methoden, wie die Simulation von Turbulenzen und Parallel-Verarbeitung. Das Buch beschreibt die Grundlagen und Prinzipien der verschiedenen Methoden. Numerische Genauigkeit und Abschätzung sowie Fehlerreduktion werden detailliert mit vielen Beispielen behandelt. Alle Computercodes sind über den Server ftp.springer.de des Springer-Verlages erhältlich (Internet).

An Introduction to Parallel Computational Fluid Dynamics

Author: F. Pappetti,S. Succi

Publisher: Nova Publishers

ISBN: 9781560723547

Category: Science

Page: 236

View: 5782

Introduces to experienced practitioners of computational fluid dynamics, the methods used on parallel computers. Focusing on basic ideas rather than in-dept details, covers the basic equations of fluid flow, grid and particle methods for numerical solutions, parallel explicit and implicit methods, c

CFD-Modellierung

Grundlagen und Anwendungen bei Strömungsprozessen

Author: Rüdiger Schwarze

Publisher: Springer-Verlag

ISBN: 3642243789

Category: Technology & Engineering

Page: 193

View: 658

In diesem kompakten Lehrbuch legt der Autor die Methodik der numerischen Simulation von Strömungsprozessen dar. Nach einer konzisen Erläuterung der Grundlagen lernen Leser das Potenzial der Methodik anhand von Anwendungsbeispielen kennen. Demonstriert werden sowohl einfache wie komplexe Probleme. Während Leser die einfachen Problemstellungen mithilfe von Open-Source-Softwarepaketen selbst bearbeitet können, sind die komplexen Beispiele aus aktuellen grundlagenorientierten und aus anwendungsnahen Forschungsprojekten des Autors abgeleitet.

Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics

Author: Titus Petrila,Damian Trif

Publisher: Springer Science & Business Media

ISBN: 0387238387

Category: Mathematics

Page: 500

View: 6237

The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.

The Finite Volume Method in Computational Fluid Dynamics

An Advanced Introduction with OpenFOAM® and Matlab

Author: F. Moukalled,L. Mangani,M. Darwish

Publisher: Springer

ISBN: 3319168746

Category: Technology & Engineering

Page: 791

View: 9666

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics

Author: Charles Hirsch

Publisher: Elsevier

ISBN: 9780080550022

Category: Mathematics

Page: 680

View: 4878

The second edition of this book is a self-contained introduction to computational fluid dynamics (CFD). It covers the fundamentals of the subject and is ideal as a text or a comprehensive reference to CFD theory and practice. New approach takes readers seamlessly from first principles to more advanced and applied topics. Presents the essential components of a simulation system at a level suitable for those coming into contact with CFD for the first time, and is ideal for those who need a comprehensive refresher on the fundamentals of CFD. Enhanced pedagogy features chapter objectives, hands-on practice examples and end of chapter exercises. Extended coverage of finite difference, finite volume and finite element methods. New chapters include an introduction to grid properties and the use of grids in practice. Includes material on 2-D inviscid, potential and Euler flows, 2-D viscous flows and Navier-Stokes flows to enable the reader to develop basic CFD simulations. Includes best practice guidelines for applying existing commercial or shareware CFD tools.

Computational Methods in Environmental Fluid Mechanics

Author: Olaf Kolditz

Publisher: Springer Science & Business Media

ISBN: 9783540428954

Category: Computers

Page: 378

View: 454

Fluids play an important role in environmental systems appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport as well as deformation processes in subsurface systems. In this reference work the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations as well as its object-oriented computer implementation are discussed and illustrated with examples. Finally, the application of computer models in civil and environmental engineering is demonstrated.

Introduction to Computational Fluid Dynamics

Development, Application and Analysis

Author: Atul Sharma

Publisher: John Wiley & Sons

ISBN: 1119003016

Category: Technology & Engineering

Page: 300

View: 1948

This book is primarily for a first one-semester course on CFD; in mechanical, chemical, and aeronautical engineering. Almost all the existing books on CFD assume knowledge of mathematics in general and differential calculus as well as numerical methods in particular; thus, limiting the readership mostly to the postgraduate curriculum. In this book, an attempt is made to simplify the subject even for readers who have little or no experience in CFD, and without prior knowledge of fluid-dynamics, heattransfer and numerical-methods. The major emphasis is on simplification of the mathematics involved by presenting physical-law (instead of the traditional differential equations) based algebraic-formulations, discussions, and solution-methodology. The physical law based simplified CFD approach (proposed in this book for the first time) keeps the level of mathematics to school education, and also allows the reader to intuitively get started with the computer-programming. Another distinguishing feature of the present book is to effectively link the theory with the computer-program (code). This is done with more pictorial as well as detailed explanation of the numerical methodology. Furthermore, the present book is structured for a module-by-module code-development of the two-dimensional numerical formulation; the codes are given for 2D heat conduction, advection and convection. The present subject involves learning to develop and effectively use a product - a CFD software. The details for the CFD development presented here is the main part of a CFD software. Furthermore, CFD application and analysis are presented by carefully designed example as well as exercise problems; not only limited to fluid dynamics but also includes heat transfer. The reader is trained for a job as CFD developer as well as CFD application engineer; and can also lead to start-ups on the development of "apps" (customized CFD software) for various engineering applications. "Atul has championed the finite volume method which is now the industry standard. He knows the conventional method of discretizing differential equations but has never been satisfied with it. As a result, he has developed a principle that physical laws that characterize the differential equations should be reflected at every stage of discretization and every stage of approximation. This new CFD book is comprehensive and has a stamp of originality of the author. It will bring students closer to the subject and enable them to contribute to it." —Dr. K. Muralidhar, IIT Kanpur, INDIA

Computational Techniques for Fluid Dynamics 1

Fundamental and General Techniques

Author: Clive A.J. Fletcher

Publisher: Springer Science & Business Media

ISBN: 3642970354

Category: Science

Page: 409

View: 9756

The purpose of this two-volume textbook is to provide students of engineer ing, science and applied mathematics with the specific techniques, and the framework to develop skill in using them, that have proven effective in the various branches of computational fluid dynamics (CFD). Volume 1 de scribes both fundamental and general techniques that are relevant to all branches of fluid flow. Volume 2 provides specific techniques, applicable to the different categories of engineering flow behaviour, many of which are also appropriate to convective heat transfer. An underlying theme of the text ist that the competing formulations which are suitable for computational fluid dynamics, e.g. the finite differ ence, finite element, finite volume and spectral methods, are closely related and can be interpreted as part of a unified structure. Classroom experience indicates that this approach assists, considerably, the student in acquiring a deeper understanding of the strengths and weaknesses of the alternative computational methods. Through the provision of 24 computer programs and associated exam ples and problems, the present text is also suitable for established research workers and practitioners who wish to acquire computational skills without the benefit of formal instruction. The text includes the most up-to-date techniques and is supported by more than 300 figures and 500 references.

Essential Computational Fluid Dynamics

Author: Oleg Zikanov

Publisher: John Wiley & Sons

ISBN: 1118174399

Category: Science

Page: 320

View: 4401

This book serves as a complete and self-contained introduction tothe principles of Computational Fluid Dynamic (CFD)analysis. It is deliberately short (at approximately 300pages) and can be used as a text for the first part of the courseof applied CFD followed by a software tutorial. The mainobjectives of this non-traditional format are: 1) To introduce andexplain, using simple examples where possible, the principles andmethods of CFD analysis and to demystify the `black box’ of aCFD software tool, and 2) To provide a basic understanding of howCFD problems are set and which factors affect the success andfailure of the analysis. Included in the text are themathematical and physical foundations of CFD, formulation of CFDproblems, basic principles of numerical approximation (grids,consistency, convergence, stability, and order of approximation,etc), methods of discretization with focus on finite difference andfinite volume techniques, methods of solution of transient andsteady state problems, commonly used numerical methods for heattransfer and fluid flows, plus a brief introduction into turbulencemodeling.

An Introduction to Nonlinear Finite Element Analysis

With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics

Author: Junuthula Narasimha Reddy,J. N. Reddy

Publisher: Oxford University Press, USA

ISBN: 0199641757

Category: Science

Page: 687

View: 2429

The second edition of An Introduction to Nonlinear Finite Element Analysis offers an easy-to-understand treatment of nonlinear finite element analysis, which includes element development from mathematical models and numerical evaluation of the underlying physics. Additional explanations, examples, and problems have been added to all chapters. The book may be used as a textbook for an advanced course (after a first course) on the finite element method orthe first course on nonlinear finite element analysis. A solutions manual is available on request from the publisher to instructors who adopt the book as a textbook for a course.

Numerical Heat Transfer and Fluid Flow

Author: Suhas Patankar

Publisher: CRC Press

ISBN: 9780891165224

Category: Science

Page: 214

View: 4571

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

Computational Fluid Dynamics

A Practical Approach

Author: Jiyuan Tu,Guan Heng Yeoh,Chaoqun Liu

Publisher: Butterworth-Heinemann

ISBN: 0080982433

Category: Science

Page: 440

View: 9470

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content

Computational Fluid Dynamics in Fire Engineering

Theory, Modelling and Practice

Author: Guan Heng Yeoh,Kwok Kit Yuen

Publisher: Butterworth-Heinemann

ISBN: 9780080570037

Category: Technology & Engineering

Page: 544

View: 323

Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of ‘untenable’ fire disasters such as at King’s Cross underground station or Switzerland’s St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures. No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. · Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering · Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators · Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software.

Introduction to Heat Transfer

Author: Bengt Sundén

Publisher: WIT Press

ISBN: 1845646568

Category: Science

Page: 344

View: 2788

Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms

Computational Fluid Dynamics

Author: Frederic Magoules

Publisher: CRC Press

ISBN: 1439856613

Category: Mathematics

Page: 407

View: 6217

Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow. Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel approach of computational fluid dynamics based on the mesh-free technique, and then improve the method using an arbitrary Lagrange Euler (ALE) formalism. They also explain how to improve the accuracy of the mesh-free integration procedure, with special emphasis on the finite volume particle method (FVPM). After describing numerical algorithms for compressible computational fluid dynamics, the text discusses the prediction of turbulent complex flows in environmental and engineering problems. The last chapter explores the modeling and numerical simulation of free surface flows, including future behaviors of glaciers. The diverse applications discussed in this book illustrate the importance of numerical methods in fluid mechanics. With research continually evolving in the field, there is no doubt that new techniques and tools will emerge to offer greater accuracy and speed in solving and analyzing even more fluid flow problems.

Computational Fluid Mechanics and Heat Transfer, Third Edition

Author: Richard H. Pletcher,John C. Tannehill,Dale Anderson

Publisher: Taylor & Francis

ISBN: 1466578300

Category: Science

Page: 774

View: 6905

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.