Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260291

Category: Mathematics

Page: 242

View: 2124

Skip to content
# Nothing Found

### An Introduction to Algebraic and Combinatorial Coding Theory

An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.

### Codierungstheorie

Das Lehrbuch über Codierungstheorie für Mathematik- und Informatik-Studenten setzt außer elementarem Grundwissen keine besonderen Kenntnisse voraus. Angesprochen werden Themen aus den Gebieten: Quellencodierung, Prüfzeichenverfahren, fehlerkorrigierende Codes und Kryptosysteme. Begriffe, Methoden und Sätze sind bis ins Detail ausführlich dargestellt und durch viele einfache Beispiele erläutert. Ergänzend zur 1. Auflage sind als Themen u.a. hinzugekommen: DVD-Datenträger, MDS-Codes und Bögen, Codes über Z4, Quantencodes, Zero-Knowledge-Protokolle, Quantenkryptographie und elliptische Kurven in der Kryptographie.

### Introduction to Coding Theory

This book has long been considered one of the classic references to an important area in the fields of information theory and coding theory. This third edition has been revised and expanded, including new chapters on algebraic geometry, new classes of codes, and the essentials of the most recent developments in binary codes. Also included are exercises with complete solutions.

### An Introduction to Quasigroups and Their Representations

Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory, the first three chapters provide a foundation in the theory of quasigroups and loops, covering special classes, the combinatorial multiplication group, universal stabilizers, and quasigroup analogues of abelian groups. Subsequent chapters deal with the three main branches of representation theory-permutation representations of quasigroups, combinatorial character theory, and quasigroup module theory. Each chapter includes exercises and examples to demonstrate how the theories discussed relate to practical applications. The book concludes with appendices that summarize some essential topics from category theory, universal algebra, and coalgebras. Long overshadowed by general group theory, quasigroups have become increasingly important in combinatorics, cryptography, algebra, and physics. Covering key research problems, An Introduction to Quasigroups and Their Representations proves that you can apply group representation theories to quasigroups as well.

### Algebraic Coding Theory Over Finite Commutative Rings

This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.

### Introduction to Combinatorics

Accessible to undergraduate students, Introduction to Combinatorics presents approaches for solving counting and structural questions. It looks at how many ways a selection or arrangement can be chosen with a specific set of properties and determines if a selection or arrangement of objects exists that has a particular set of properties. To give students a better idea of what the subject covers, the authors first discuss several examples of typical combinatorial problems. They also provide basic information on sets, proof techniques, enumeration, and graph theory—topics that appear frequently throughout the book. The next few chapters explore enumerative ideas, including the pigeonhole principle and inclusion/exclusion. The text then covers enumerative functions and the relations between them. It describes generating functions and recurrences, important families of functions, and the theorems of Pólya and Redfield. The authors also present introductions to computer algebra and group theory, before considering structures of particular interest in combinatorics: graphs, codes, Latin squares, and experimental designs. The last chapter further illustrates the interaction between linear algebra and combinatorics. Exercises and problems of varying levels of difficulty are included at the end of each chapter. Ideal for undergraduate students in mathematics taking an introductory course in combinatorics, this text explores the different ways of arranging objects and selecting objects from a set. It clearly explains how to solve the various problems that arise in this branch of mathematics.

### Introduction to Finite Fields and Their Applications

Presents an introduction to the theory of finite fields and some of its most important applications.

### Error-Correcting Linear Codes

This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.

### Algebraic Topology

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

### Elements of Functional Analysis

This book presents the fundamental function spaces and their duals, explores operator theory and finally develops the theory of distributions up to significant applications such as Sobolev spaces and Dirichlet problems. Includes an assortment of well formulated exercises, with answers and hints collected at the end of the book.

### Representations of Compact Lie Groups

This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.

### Some Tapas of Computer Algebra

This book presents the basic concepts and algorithms of computer algebra using practical examples that illustrate their actual use in symbolic computation. A wide range of topics are presented, including: Groebner bases, real algebraic geometry, lie algebras, factorization of polynomials, integer programming, permutation groups, differential equations, coding theory, automatic theorem proving, and polyhedral geometry. This book is a must read for anyone working in the area of computer algebra, symbolic computation, and computer science.

### Introduction to Combinatorics

### Introduction to the Theory of Error-Correcting Codes

A complete introduction to the many mathematical tools used tosolve practical problems in coding. Mathematicians have been fascinated with the theory oferror-correcting codes since the publication of Shannon's classicpapers fifty years ago. With the proliferation of communicationssystems, computers, and digital audio devices that employerror-correcting codes, the theory has taken on practicalimportance in the solution of coding problems. This solutionprocess requires the use of a wide variety of mathematical toolsand an understanding of how to find mathematical techniques tosolve applied problems. Introduction to the Theory of Error-Correcting Codes, Third Editiondemonstrates this process and prepares students to cope with codingproblems. Like its predecessor, which was awarded a three-starrating by the Mathematical Association of America, this updated andexpanded edition gives readers a firm grasp of the timelessfundamentals of coding as well as the latest theoretical advances.This new edition features: * A greater emphasis on nonlinear binary codes * An exciting new discussion on the relationship between codes andcombinatorial games * Updated and expanded sections on the Vashamov-Gilbert bound, vanLint-Wilson bound, BCH codes, and Reed-Muller codes * Expanded and updated problem sets. Introduction to the Theory of Error-Correcting Codes, Third Editionis the ideal textbook for senior-undergraduate and first-yeargraduate courses on error-correcting codes in mathematics, computerscience, and electrical engineering.

### Introduction to Coding Theory

This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.

### Codes: An Introduction to Information Communication and Cryptography

Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.

### Coding Theory

These lecture notes are the contents of a two-term course given by me during the 1970-1971 academic year as Morgan Ward visiting professor at the California Institute of Technology. The students who took the course were mathematics seniors and graduate students. Therefore a thorough knowledge of algebra. (a. o. linear algebra, theory of finite fields, characters of abelian groups) and also probability theory were assumed. After introducing coding theory and linear codes these notes concern topics mostly from algebraic coding theory. The practical side of the subject, e. g. circuitry, is not included. Some topics which one would like to include 1n a course for students of mathematics such as bounds on the information rate of codes and many connections between combinatorial mathematics and coding theory could not be treated due to lack of time. For an extension of the course into a third term these two topics would have been chosen. Although the material for this course came from many sources there are three which contributed heavily and which were used as suggested reading material for the students. These are W. W. Peterson's Error-Correcting Codes «(15]), E. R. Berlekamp's Algebraic Coding Theory «(5]) and several of the AFCRL-reports by E. F. Assmus, H. F. Mattson and R. Turyn ([2], (3), [4] a. o. ). For several fruitful discussions I would like to thank R. J. McEliece.

### Introduction to Coding Theory, Second Edition

This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.

### Elements of Algebraic Coding Theory

Coding theory came into existence in the late 1940's and is concerned with devising efficient encoding and decoding procedures. The book is intended as a principal text for first courses in coding and algebraic coding theory, and is aimed at advanced undergraduates and recent graduates as both a course and self-study text. BCH and cyclic, Group codes, Hamming codes, polynomial as well as many other codes are introduced in this textbook. Incorporating numerous worked examples and complete logical proofs, it is an ideal introduction to the fundamental of algebraic coding.

### Introduction to Combinatorics

The growth in digital devices, which require discrete formulation of problems, has revitalized the role of combinatorics, making it indispensable to computer science. Furthermore, the challenges of new technologies have led to its use in industrial processes, communications systems, electrical networks, organic chemical identification, coding theory, economics, and more. With a unique approach, Introduction to Combinatorics builds a foundation for problem-solving in any of these fields. Although combinatorics deals with finite collections of discrete objects, and as such differs from continuous mathematics, the two areas do interact. The author, therefore, does not hesitate to use methods drawn from continuous mathematics, and in fact shows readers the relevance of abstract, pure mathematics to real-world problems. The author has structured his chapters around concrete problems, and as he illustrates the solutions, the underlying theory emerges. His focus is on counting problems, beginning with the very straightforward and ending with the complicated problem of counting the number of different graphs with a given number of vertices. Its clear, accessible style and detailed solutions to many of the exercises, from routine to challenging, provided at the end of the book make Introduction to Combinatorics ideal for self-study as well as for structured coursework.

Full PDF eBook Download Free

Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260291

Category: Mathematics

Page: 242

View: 2124

*Eine Einführung*

Author: Ralph-Hardo Schulz

Publisher: Springer-Verlag

ISBN: 3322803287

Category: Computers

Page: 249

View: 5130

Author: J.H. van Lint

Publisher: Springer Science & Business Media

ISBN: 9783540641339

Category: Computers

Page: 227

View: 3149

Author: Jonathan D. H. Smith

Publisher: CRC Press

ISBN: 9781420010633

Category: Mathematics

Page: 352

View: 4600

Author: Steven T. Dougherty

Publisher: Springer

ISBN: 3319598066

Category: Mathematics

Page: 103

View: 3019

Author: Walter D. Wallis,John C. George

Publisher: CRC Press

ISBN: 143989499X

Category: Computers

Page: 396

View: 9061

Author: Rudolf Lidl,Harald Niederreiter

Publisher: Cambridge University Press

ISBN: 9780521460941

Category: Mathematics

Page: 416

View: 1776

*Classification by Isometry and Applications*

Author: Anton Betten,Michael Braun,Harald Fripertinger,Adalbert Kerber,Axel Kohnert,Alfred Wassermann

Publisher: Springer Science & Business Media

ISBN: 3540317031

Category: Mathematics

Page: 798

View: 5522

*A First Course*

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 2457

Author: Francis Hirsch,Gilles Lacombe

Publisher: Springer Science & Business Media

ISBN: 9780387985244

Category: Mathematics

Page: 396

View: 7875

Author: T. Bröcker,T.tom Dieck

Publisher: Springer Science & Business Media

ISBN: 9783540136781

Category: Mathematics

Page: 316

View: 7525

Author: Arjeh M. Cohen,Hans Cuypers,Hans Sterk

Publisher: Springer Science & Business Media

ISBN: 3662038919

Category: Computers

Page: 352

View: 8755

Author: Martin J. Erickson

Publisher: John Wiley & Sons

ISBN: 1118030893

Category: Mathematics

Page: 208

View: 9254

Author: Vera Pless

Publisher: John Wiley & Sons

ISBN: 1118030990

Category: Mathematics

Page: 224

View: 6584

Author: Jurgen Bierbrauer

Publisher: CRC Press

ISBN: 148229981X

Category: Computers

Page: 512

View: 8681

Author: Norman L. Biggs

Publisher: Springer Science & Business Media

ISBN: 9781848002739

Category: Computers

Page: 274

View: 4011

Author: J. H. van Lint

Publisher: Springer Science & Business Media

ISBN: 3540063633

Category: Mathematics

Page: 142

View: 2820

Author: Jurgen Bierbrauer

Publisher: CRC Press

ISBN: 1482299836

Category: Computers

Page: 538

View: 9387

Author: L.R. Vermani

Publisher: CRC Press

ISBN: 9780412573804

Category: Mathematics

Page: 256

View: 3742

Author: A. B. Slomson

Publisher: CRC Press

ISBN: 9780412353703

Category: Mathematics

Page: 270

View: 6712