Lectures on Complex Integration

Author: A. O. Gogolin

Publisher: Springer Science & Business Media

ISBN: 3319002120

Category: Science

Page: 285

View: 9960

The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.

Mathematische Bildverarbeitung

Einführung in Grundlagen und moderne Theorie

Author: Kristian Bredies,Dirk Lorenz

Publisher: Springer-Verlag

ISBN: 3834898147

Category: Mathematics

Page: 445

View: 5537

Dieses Buch behandelt die mathematischen Aspekte der modernen Bildverarbeitungsmethoden. Besonderer Schwerpunkt liegt dabei auf der Präsentation von Grundideen und Konzepten. Es werden eine Vielzahl moderner mathematischer Methoden behandelt, welche zur Lösung wichtiger, grundlegender Probleme der Bildverarbeitung eingesetzt werden. Die Grundprobleme umfassen zum Beispiel Entrauschen, Scharfzeichnen, Kantenerkennung, Inpainting. Neben elementaren Methoden wie Punktoperationen, linearen oder morphologischen Filtern stellt das Buch insbesondere neuere Methoden wie partielle Differentialgleichungen und Variationsmethoden vor.

Numerical Methods for Special Functions

Author: Amparo Gil,Javier Segura,Nico M. Temme

Publisher: SIAM

ISBN: 9780898717822

Category: Approximation theory

Page: 415

View: 6829

Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).

Asymptotic Methods for Integrals

Author: Nico M Temme

Publisher: World Scientific

ISBN: 9814612170

Category: Mathematics

Page: 628

View: 8122

This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals. The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on. Contents:Basic Methods for IntegralsBasic Methods: Examples for Special FunctionsOther Methods for IntegralsUniform Methods for IntegralsUniform Methods for Laplace-Type IntegralsUniform Examples for Special FunctionsA Class of Cumulative Distribution Functions Readership: Researchers in applied mathematics, engineering, physics, mathematical statistics, probability theory and biology. The introductory parts and examples will be useful for post-graduate students in mathematics. Key Features:The book gives a complete overview of the classical asymptotic methods for integralsThe many examples give insight in the behavior of the well-known special functionsThe detailed explanations on how to obtain the coefficients in the expansions make the results useful for numerical applications, in particular, for computing special functionsThe many results on asymptotic representations of special functions supplement and extend those in the NIST Handbook of Mathematical FunctionsKeywords:Asymptotic Analysis;Approximation of Integrals;Asymptotic Approximations;Asymptotic Expansions;Steepest Descent Methods;Saddle Point Methods;Stationary Phase Method;Special Functions;Numerical Approximation of Special Functions;Cumulative Distribution FunctionsReviews: “The book is a useful contribution to the literature. It contains many asymptotic formulas that can be used by practitioners.” Zentralblatt MATH

Books for college libraries

a selected list of approximately 53,400 titles based on the initial selection made for the University of California's New Campuses Program and selected with the assistance of college teachers, Librarians, and other advisers

Author: Melvin John Voigt,Joseph H. Treyz,American Library Association

Publisher: N.A

ISBN: N.A

Category: Language Arts & Disciplines

Page: 1056

View: 9015


DCDS-A

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 3341


Special Functions

A Graduate Text

Author: Richard Beals,Roderick Wong

Publisher: Cambridge University Press

ISBN: 1139490435

Category: Mathematics

Page: N.A

View: 8516

The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference.

Physical Review

Statistical physics, plasmas, fluids, and related interdisciplinary topics. E

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Fluids

Page: N.A

View: 5365


Scripta Mathematica

A Quarterly Journal Devoted to the Philosophy, History, and Expository Treatment of Mathematics

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 1000

Includes section "Book reviews."

Die Konfluente Hypergeometrische Funktion

Mit Besonderer Berücksichtigung ihrer Anwendung

Author: Herbert Buchholz

Publisher: Springer-Verlag

ISBN: 364253371X

Category: Mathematics

Page: 236

View: 2169

Das vorliegende Buch behandelt die unter dem Namen der konflu enten hypergeometrischen Funktion bekannte höhere transzendente Funktion, der in den physikalischen und technischen Anwendungen der Mathematik eine besonders in den letzten beiden Jahrzehnten ständig steigende Bedeutung zukommt. Es steht außer Zweifel, daß sich diese Tendenz in der Zukunft noch wesentlich verstärken wird, und so wie zunächst die Zylinderfunktionen nur von einigen Wenigen zuverlässig gehandhabt werden konnten, bis sie heute selbst schon dem rechnenden Ingenieur vertraut geworden sind, so wird auch die Theorie der all gemeineren konfluenten hypergeometrischen Funktion sehr bald einem immer größeren Kreis von Physikern geläufig sein. In diese Entwick lung soll das vorliegende Buch fördernd eingreifen. Die große praktische Bedeutung der hier behandelten Funktion bedarf schon deswegen kaum einer eingehenden Begründung, weil sie einmal eine große Zahl einfacherer spezieller Funktionen, die schon seit langem zum täglichen Werkzeug des Physikers gehören, als Sonderfälle umfaßt. Es genügt, an dieser Stelle zu erwähnen, daß dazu u. a. der Integrallogarithmus, der Integralsinus und -cosinus, das Fehlerintegral, die Fresnelschen Integrale, die Zylinderfunktionen und endlich die Funktionen des parabolischen Zylinders gehören. Es hat also derjenige, der sich die Mühe macht, die konfluente hypergeometrische Funktion eingehender zu studieren, den nicht hoch genug einzuschätzenden Vorteil, daß ihm die Theorie dieser Funktion die Eigenschaften der aus ihr ableit baren Funktionen sozusagen von einer höheren Warte aus zu über blicken gestattet.