Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 7718

Skip to content
# Nothing Found

### A First Course in the Numerical Analysis of Differential Equations

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

### A First Course in the Numerical Analysis of Differential Equations

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

### A First Course in the Numerical Analysis of Differential Equations

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The exposition maintains a balance between theoretical, algorithmic and applied aspects. This second edition has been extensively updated, and includes new chapters on emerging subject areas: geometric numerical integration, spectral methods and conjugate gradients. Other topics covered include multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; and a variety of algorithms to solve large, sparse algebraic systems.

### A First Course in Numerical Analysis

Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.

### A First Course in Ordinary Differential Equations

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

### Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

### Introduction to Numerical Methods in Differential Equations

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.

### Numerical Solution of Ordinary Differential Equations

### Numerical Methods for Ordinary Differential Equations

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

### Numerical Solution of Ordinary Differential Equations

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

### A First Course in Differential Equations

This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: First-order equations: separable, linear, autonomous, and bifurcation phenomena; Second-order linear homogeneous and non-homogeneous equations; Laplace transforms; and Linear and nonlinear systems, and phase plane properties.

### Numerical Approximation of Partial Differential Equations

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

### Numerical Solution of Partial Differential Equations

This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

### Fundamentals of Engineering Numerical Analysis

This text introduces numerical methods and shows how to develop, analyze, and use them. Complete MATLAB programs are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is a first course in numerical analysis for new graduate students in engineering and physical science.

### A First Course on Numerical Methods

Offers students a practical knowledge of modern techniques in scientific computing.

### Scientific Computing and Differential Equations

A book that emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. An introductory chapter on this topic gives an overview of modern scientific computing, outlining its applications and placing the subject in a larger context.

### A Graduate Introduction to Numerical Methods

This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.

### A First Course in Differential Equations with Modeling Applications

A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

### Partial Differential Equations

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Full PDF eBook Download Free

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 7718

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 3659

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 113947376X

Category: Mathematics

Page: N.A

View: 5656

Author: Anthony Ralston,Philip Rabinowitz

Publisher: Courier Corporation

ISBN: 9780486414546

Category: Mathematics

Page: 606

View: 9577

*Analytical and Numerical Methods*

Author: Martin Hermann,Masoud Saravi

Publisher: Springer Science & Business

ISBN: 8132218353

Category: Mathematics

Page: 288

View: 2036

*Initial Value Problems*

Author: David F. Griffiths,Desmond J. Higham

Publisher: Springer Science & Business Media

ISBN: 9780857291486

Category: Mathematics

Page: 271

View: 7189

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

ISBN: 0387681213

Category: Mathematics

Page: 239

View: 1792

Author: L.F. Shampine

Publisher: CRC Press

ISBN: 9780412051517

Category: Mathematics

Page: 632

View: 4110

Author: J. C. Butcher

Publisher: John Wiley & Sons

ISBN: 1119121523

Category: Mathematics

Page: 544

View: 2537

Author: Kendall Atkinson,Weimin Han,David E. Stewart

Publisher: John Wiley & Sons

ISBN: 1118164520

Category: Mathematics

Page: 272

View: 5434

Author: J David Logan

Publisher: Springer Science & Business Media

ISBN: 9781441975928

Category: Mathematics

Page: 386

View: 5901

Author: Alfio Quarteroni,Alberto Valli

Publisher: Springer Science & Business Media

ISBN: 3540852689

Category: Mathematics

Page: 544

View: 6727

*An Introduction*

Author: K. W. Morton,D. F. Mayers

Publisher: Cambridge University Press

ISBN: 1139443208

Category: Mathematics

Page: N.A

View: 2535

Author: Parviz Moin

Publisher: Cambridge University Press

ISBN: 0521711231

Category: Mathematics

Page: 241

View: 7210

Author: Uri M. Ascher,Chen Greif

Publisher: SIAM

ISBN: 0898719976

Category: Mathematics

Page: 552

View: 6697

*An Introduction to Numerical Methods*

Author: Gene Howard Golub,James M. Ortega

Publisher: Academic Press

ISBN: 9780122892554

Category: Computers

Page: 337

View: 5509

*From the Viewpoint of Backward Error Analysis*

Author: Robert Corless,Nicolas Fillion

Publisher: Springer Science & Business Media

ISBN: 1461484537

Category: Mathematics

Page: 869

View: 2331

Author: Dennis Zill

Publisher: Cengage Learning

ISBN: 1111827052

Category: Mathematics

Page: 464

View: 2455

*Analytical and Numerical Methods, Second Edition*

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719356

Category: Mathematics

Page: 654

View: 803