A Course in Mathematical Logic

Author: I͡U. I. Manin,Jurij I. Manin,Yu I. Manin,︠I︡U. I. Manin,I︠U︡riĭ Ivanovich Manin,Ûrij Ivanovič Manin

Publisher: Springer Science & Business Media

ISBN: 9780387902432

Category: Mathematics

Page: 286

View: 7043

This book is a text of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last 10 to 15 years, including the independence of the continuum hypothesis, the Diophantine nature of enumerable sets and the impossibility of finding an algorithmic solution for certain problems. The book contains the first textbook presentation of Matijasevic's result. The central notions are provability and computability; the emphasis of the presentation is on aspects of the theory which are of interest to the working mathematician. Many of the approaches and topics covered are not standard parts of logic courses; they include a discussion of the logic of quantum mechanics, Goedel's constructible sets as a sub-class of von Neumann's universe, the Kolmogorov theory of complexity. Feferman's theorem on Goedel formulas as axioms and Highman's theorem on groups defined by enumerable sets of generators and relations. A number of informal digressions concerned with psychology, linguistics, and common sense logic should interest students of the philosophy of science or the humanities.

A Course in Mathematical Logic for Mathematicians

Author: Yu. I. Manin

Publisher: Springer Science & Business Media

ISBN: 1441906150

Category: Mathematics

Page: 384

View: 798

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.

A Course in Mathematical Logic

Author: Yu.I. Manin

Publisher: Springer Science & Business Media

ISBN: 1475743858

Category: Mathematics

Page: 288

View: 7427

1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.

A Course in Mathematical Logic

Author: John Lane Bell,Moshé Machover

Publisher: North-Holland

ISBN: N.A

Category: Computers

Page: 599

View: 9937

A comprehensive one-year graduate (or advanced undergraduate) course in mathematical logic and foundations of mathematics. No previous knowledge of logic is required; the book is suitable for self-study. Many exercises (with hints) are included.

Introduction to Model Theory

Author: Philipp Rothmaler

Publisher: CRC Press

ISBN: 9789056993139

Category: Mathematics

Page: 324

View: 373

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.

A Course on Mathematical Logic

Author: Shashi Mohan Srivastava

Publisher: Springer Science & Business Media

ISBN: 1461457467

Category: Mathematics

Page: 198

View: 1954

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer Science & Business Media

ISBN: 0387342419

Category: Mathematics

Page: 256

View: 7053

While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.

An Algebraic Introduction to Mathematical Logic

Author: D.W. Barnes,J.M. Mack

Publisher: Springer Science & Business Media

ISBN: 1475744897

Category: Mathematics

Page: 123

View: 6231

This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a sub stantial course on abstract algebra. Consequently, our treatment ofthe sub ject is algebraic. Although we assurne a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of . the exercises. We also assurne a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model oflogic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based-rather, any conclusions to be drawn about the foundations of mathematics co me only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.

Lectures in Logic and Set Theory: Volume 1, Mathematical Logic

Author: George Tourlakis

Publisher: Cambridge University Press

ISBN: 9781139439428

Category: Mathematics

Page: N.A

View: 2502

This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume 1 includes formal proof techniques, a section on applications of compactness (including nonstandard analysis), a generous dose of computability and its relation to the incompleteness phenomenon, and the first presentation of a complete proof of Godel's 2nd incompleteness since Hilbert and Bernay's Grundlagen theorem.

Algebraic Topology

A First Course

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 7346

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Mathematical Logic

Author: George Tourlakis

Publisher: John Wiley & Sons

ISBN: 1118030699

Category: Mathematics

Page: 294

View: 1594

A comprehensive and user-friendly guide to the use of logic inmathematical reasoning Mathematical Logic presents a comprehensive introductionto formal methods of logic and their use as a reliable tool fordeductive reasoning. With its user-friendly approach, this booksuccessfully equips readers with the key concepts and methods forformulating valid mathematical arguments that can be used touncover truths across diverse areas of study such as mathematics,computer science, and philosophy. The book develops the logical tools for writing proofs byguiding readers through both the established "Hilbert" style ofproof writing, as well as the "equational" style that is emergingin computer science and engineering applications. Chapters havebeen organized into the two topical areas of Boolean logic andpredicate logic. Techniques situated outside formal logic areapplied to illustrate and demonstrate significant facts regardingthe power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems ofPost and Gödel). Logic cannot certify all "conditional" truths, such as thosethat are specific to the Peano arithmetic. Therefore, logic hassome serious limitations, as shown through Gödel'sincompleteness theorem. Numerous examples and problem sets are provided throughout thetext, further facilitating readers' understanding of thecapabilities of logic to discover mathematical truths. In addition,an extensive appendix introduces Tarski semantics and proceeds withdetailed proofs of completeness and first incompleteness theorems,while also providing a self-contained introduction to the theory ofcomputability. With its thorough scope of coverage and accessible style,Mathematical Logic is an ideal book for courses inmathematics, computer science, and philosophy at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners who wish to learn howto use logic in their everyday work.

Einführung in die mathematische Logik

Author: Heinz-Dieter Ebbinghaus,Jörg Flum,Wolfgang Thomas

Publisher: Springer Spektrum

ISBN: 9783662580288

Category: Mathematics

Page: 367

View: 8622

Was ist ein mathematischer Beweis? Wie lassen sich Beweise rechtfertigen? Gibt es Grenzen der Beweisbarkeit? Ist die Mathematik widerspruchsfrei? Kann man das Auffinden mathematischer Beweise Computern übertragen? Erst im 20. Jahrhundert ist es der mathematischen Logik gelungen, weitreichende Antworten auf diese Fragen zu geben: Im vorliegenden Werk werden die Ergebnisse systematisch zusammengestellt; im Mittelpunkt steht dabei die Logik erster Stufe. Die Lektüre setzt – außer einer gewissen Vertrautheit mit der mathematischen Denkweise – keine spezifischen Kenntnisse voraus. In der vorliegenden 5. Auflage finden sich erstmals Lösungsskizzen zu den Aufgaben.

Fundamentals of Mathematical Logic

Author: Peter G. Hinman

Publisher: CRC Press

ISBN: 1439864276

Category: Mathematics

Page: 894

View: 8513

This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.

A Tour Through Mathematical Logic

Author: Robert S. Wolf

Publisher: MAA

ISBN: 9780883850367

Category: Mathematics

Page: 397

View: 6711

The foundations of mathematics include mathematical logic, set theory, recursion theory, model theory, and Gdel's incompleteness theorems. Professor Wolf provides here a guide that any interested reader with some post-calculus experience in mathematics can read, enjoy, and learn from. It could also serve as a textbook for courses in the foundations of mathematics, at the undergraduate or graduate level. The book is deliberately less structured and more user-friendly than standard texts on foundations, so will also be attractive to those outside the classroom environment wanting to learn about the subject.

Introduction to Mathematical Logic

Set Theory Computable Functions Model Theory

Author: Jerome Malitz

Publisher: Springer Science & Business Media

ISBN: 1461394414

Category: Mathematics

Page: 198

View: 7116

This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel oped step by step with hints in the problems. Such theorems are not used later in the sequence.

Integration and Probability

Author: Paul Malliavin

Publisher: Springer Science & Business Media

ISBN: 1461242029

Category: Mathematics

Page: 326

View: 6610

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.

Field Theory

Author: Steven Roman

Publisher: Springer Science & Business Media

ISBN: 0387276785

Category: Mathematics

Page: 335

View: 1598

"Springer has just released the second edition of Steven Roman’s Field Theory, and it continues to be one of the best graduate-level introductions to the subject out there....Every section of the book has a number of good exercises that would make this book excellent to use either as a textbook or to learn the material on your own. All in all...a well-written expository account of a very exciting area in mathematics." --THE MAA MATHEMATICAL SCIENCES DIGITAL LIBRARY